Some insects are dipterous or double-winged, as the fly;
others are tetrapterous or furnished with four wings, as the bee; and,
by the way, no insect with only two wings has a sting in the rear.
others are tetrapterous or furnished with four wings, as the bee; and,
by the way, no insect with only two wings has a sting in the rear.
Aristotle
One of them is nicknamed by some persons the nautilus or
the pontilus, or by others the 'polypus' egg'; and the shell of this
creature is something like a separate valve of a deep scallop-shell.
This polypus lives very often near to the shore, and is apt to be
thrown up high and dry on the beach; under these circumstances it is
found with its shell detached, and dies by and by on dry land. These
polypods are small, and are shaped, as regards the form of their
bodies, like the bolbidia. There is another polypus that is placed
within a shell like a snail; it never comes out of the shell, but
lives inside the shell like the snail, and from time to time protrudes
its feelers.
So much for molluscs.
2
With regard to the Malacostraca or crustaceans, one species is
that of the crawfish, and a second, resembling the first, is that of
the lobster; the lobster differing from the crawfish in having
claws, and in a few other respects as well. Another species is that of
the carid, and another is that of the crab, and there are many kinds
both of carid and of crab.
Of carids there are the so-called cyphae, or 'hunch-backs', the
crangons, or squillae, and the little kind, or shrimps, and the little
kind do not develop into a larger kind.
Of the crab, the varieties are indefinite and incalculable. The
largest of all crabs is one nicknamed Maia, a second variety is the
pagarus and the crab of Heracleotis, and a third variety is the
fresh-water crab; the other varieties are smaller in size and
destitute of special designations. In the neighbourhood of Phoenice
there are found on the beach certain crabs that are nicknamed the
'horsemen', from their running with such speed that it is difficult to
overtake them; these crabs, when opened, are usually found empty,
and this emptiness may be put down to insufficiency of nutriment.
(There is another variety, small like the crab, but resembling in
shape the lobster. ) All these animals, as has been stated, have
their hard and shelly part outside, where the skin is in other
animals, and the fleshy part inside; and the belly is more or less
provided with lamellae, or little flaps, and the female here
deposits her spawn.
The crawfishes have five feet on either side, including the
claws at the end; and in like manner the crabs have ten feet in all,
including the claws. Of the carids, the hunch-backed, or prawns,
have five feet on either side, which are sharp-pointed-those towards
the head; and five others on either side in the region of the belly,
with their extremities flat; they are devoid of flaps on the under
side such as the crawfish has, but on the back they resemble the
crawfish. (See diagram. )It is very different with the crangon, or
squilla; it has four front legs on either side, then three thin ones
close behind on either side, and the rest of the body is for the most
part devoid of feet. (See diagram. ) Of all these animals the feet
bend out obliquely, as is the case with insects; and the claws, where
claws are found, turn inwards. The crawfish has a tail, and five fins
on it; and the round-backed carid has a tail and four fins; the
squilla also has fins at the tail on either side. In the case of both
the hump-backed carid and the squilla the middle art of the tail is
spinous: only that in the squilla the part is flattened and in the
carid it is sharp-pointed. Of all animals of this genus the crab is
the only one devoid of a rump; and, while the body of the carid and
the crawfish is elongated, that of the crab is rotund.
In the crawfish the male differs from the female: in the female
the first foot is bifurcate, in the male it is undivided; the
belly-fins in the female are large and overlapping on the neck,
while in the male they are smaller and do not overlap; and, further,
on the last feet of the male there are spur-like projections, large
and sharp, which projections in the female are small and smooth.
Both male and female have two antennae in front of the eyes, large and
rough, and other antennae underneath, small and smooth. The eyes of
all these creatures are hard and beady, and can move either to the
inner or to the outer side. The eyes of most crabs have a similar
facility of movement, or rather, in the crab this facility is
developed in a higher degree. (See diagram. )
The lobster is all over grey-coloured, with a mottling of black.
Its under or hinder feet, up to the big feet or claws, are eight in
number; then come the big feet, far larger and flatter at the tips
than the same organs in the crawfish; and these big feet or claws
are exceptional in their structure, for the right claw has the extreme
flat surface long and thin, while the left claw has the
corresponding surface thick and round. Each of the two claws,
divided at the end like a pair of jaws, has both below and above a set
of teeth: only that in the right claw they are all small and
saw-shaped, while in the left claw those at the apex are saw-shaped
and those within are molar-shaped, these latter being, in the under
part of the cleft claw, four teeth close together, and in the upper
part three teeth, not close together. Both right and left claws have
the upper part mobile, and bring it to bear against the lower one, and
both are curved like bandy-legs, being thereby adapted for
apprehension and constriction. Above the two large claws come two
others, covered with hair, a little underneath the mouth; and
underneath these the gill-like formations in the region of the
mouth, hairy and numerous. These organs the animal keeps in
perpetual motion; and the two hairy feet it bends and draws in towards
its mouth. The feet near the mouth are furnished also with delicate
outgrowing appendages. Like the crawfish, the lobster has two teeth,
or mandibles, and above these teeth are its antennae, long, but
shorter and finer by far than those of the crawfish, and then four
other antennae similar in shape, but shorter and finer than the
others. Over these antennae come the eyes, small and short, not
large like the eyes of the crawfish. Over the eyes is a peaky rough
projection like a forehead, larger than the same part in the crawfish;
in fact, the frontal part is more pointed and the thorax is much
broader in the lobster than in the crawfish, and the body in general
is smoother and more full of flesh. Of the eight feet, four are
bifurcate at the extremities, and four are undivided. The region of
the so-called neck is outwardly divided into five divisions, and
sixthly comes the flattened portion at the end, and this portion has
five flaps, or tail-fins; and the inner or under parts, into which the
female drops her spawn, are four in number and hairy, and on each of
the aforesaid parts is a spine turned outwards, short and straight.
The body in general and the region of the thorax in particular are
smooth, not rough as in the crawfish; but on the large claws the outer
portion has larger spines. There is no apparent difference between the
male and female, for they both have one claw, whichever it may be,
larger than the other, and neither male nor female is ever found
with both claws of the same size.
All crustaceans take in water close by the mouth. The crab
discharges it, closing up, as it does so, a small portion of the same,
and the crawfish discharges it by way of the gills; and, by the way,
the gill-shaped organs in the crawfish are very numerous.
The following properties are common to all crustaceans: they
have in all cases two teeth, or mandibles (for the front teeth in
the crawfish are two in number), and in all cases there is in the
mouth a small fleshy structure serving for a tongue; and the stomach
is close to the mouth, only that the crawfish has a little
oesophagus in front of the stomach, and there is a straight gut
attached to it. This gut, in the crawfish and its congeners, and in
the carids, extends in a straight line to the tail, and terminates
where the animal discharges the residuum, and where the female
deposits her spawn; in the crab it terminates where the flap is
situated, and in the centre of the flap. (And by the way, in all these
animals the spawn is deposited outside. ) Further, the female has the
place for the spawn running along the gut. And, again, all these
animals have, more or less, an organ termed the 'mytis', or
'poppyjuice'.
We must now proceed to review their several differentiae.
The crawfish then, as has been said, has two teeth, large and
hollow, in which is contained a juice resembling the mytis, and in
between the teeth is a fleshy substance, shaped like a tongue. After
the mouth comes a short oesophagus, and then a membranous stomach
attached to the oesophagus, and at the orifice Of the stomach are
three teeth, two facing one another and a third standing by itself
underneath. Coming off at a bend from the stomach is a gut, simple and
of equal thickness throughout the entire length of the body until it
reaches the anal vent.
These are all common properties of the crawfish, the carid, and
the crab; for the crab, be it remembered, has two teeth.
Again, the crawfish has a duct attached all the way from the chest
to the anal vent; and this duct is connected with the ovary in the
female, and with the seminal ducts in the male. This passage is
attached to the concave surface of the flesh in such a way that the
flesh is in betwixt the duct and the gut; for the gut is related to
the convexity and this duct to the concavity, pretty much as is
observed in quadrupeds. And the duct is identical in both the sexes;
that is to say, the duct in both is thin and white, and charged with a
sallow-coloured moisture, and is attached to the chest.
(The following are the properties of the egg and of the convolutes
in the carid. )
The male, by the way, differs from the female in regard to its
flesh, in having in connexion with the chest two separate and distinct
white substances, resembling in colour and conformation the
tentacles of the cuttle-fish, and they are convoluted like the 'poppy'
or quasi-liver of the trumpet-shell. These organs have their
starting-point in 'cotyledons' or papillae, which are situated under
the hindmost feet; and hereabouts the flesh is red and blood-coloured,
but is slippery to the touch and in so far unlike flesh. Off from
the convolute organ at the chest branches off another coil about as
thick as ordinary twine; and underneath there are two granular seminal
bodies in juxta-position with the gut. These are the organs of the
male. The female has red-coloured eggs, which are adjacent to the
stomach and to each side of the gut all along to the fleshy parts,
being enveloped in a thin membrane.
Such are the parts, internal and external, of the carid.
3
The inner organs of sanguineous animals happen to have specific
designations; for these animals have in all cases the inner viscera,
but this is not the case with the bloodless animals, but what they
have in common with red-blooded animals is the stomach, the
oesophagus, and the gut.
With regard to the crab, it has already been stated that it has
claws and feet, and their position has been set forth; furthermore,
for the most part they have the right claw bigger and stronger than
the left. It has also been stated' that in general the eyes of the
crab look sideways. Further, the trunk of the crab's body is single
and undivided, including its head and any other part it may possess.
Some crabs have eyes placed sideways on the upper part, immediately
under the back, and standing a long way apart, and some have their
eyes in the centre and close together, like the crabs of Heracleotis
and the so-called 'grannies'. The mouth lies underneath the eyes,
and inside it there are two teeth, as is the case with the crawfish,
only that in the crab the teeth are not rounded but long; and over the
teeth are two lids, and in betwixt them are structures such as the
crawfish has besides its teeth. The crab takes in water near by the
mouth, using the lids as a check to the inflow, and discharges the
water by two passages above the mouth, closing by means of the lids
the way by which it entered; and the two passage-ways are underneath
the eyes. When it has taken in water it closes its mouth by means of
both lids, and ejects the water in the way above described. Next after
the teeth comes the oesophagus, very short, so short in fact that
the stomach seems to come straightway after the mouth. Next after
the oesophagus comes the stomach, two-horned, to the centre of which
is attached a simple and delicate gut; and the gut terminates
outwards, at the operculum, as has been previously stated. (The crab
has the parts in between the lids in the neighbourhood of the teeth
similar to the same parts in the crawfish. ) Inside the trunk is a
sallow juice and some few little bodies, long and white, and others
spotted red. The male differs from the female in size and breadth, and
in respect of the ventral flap; for this is larger in the female
than in the male, and stands out further from the trunk, and is more
hairy (as is the case also with the female in the crawfish).
So much, then, for the organs of the malacostraca or crustacea.
4
With the ostracoderma, or testaceans, such as the land-snails
and the sea-snails, and all the 'oysters' so-called, and also with the
sea-urchin genus, the fleshy part, in such as have flesh, is similarly
situated to the fleshy part in the crustaceans; in other words, it
is inside the animal, and the shell is outside, and there is no hard
substance in the interior. As compared with one another the testaceans
present many diversities both in regard to their shells and to the
flesh within. Some of them have no flesh at all, as the sea-urchin;
others have flesh, but it is inside and wholly hidden, except the
head, as in the land-snails, and the so-called cocalia, and, among
pelagic animals, in the purple murex, the ceryx or trumpet-shell,
the sea-snail, and the spiral-shaped testaceans in general. Of the
rest, some are bivalved and some univalved; and by 'bivalves' I mean
such as are enclosed within two shells, and by 'univalved' such as are
enclosed within a single shell, and in these last the fleshy part is
exposed, as in the case of the limpet. Of the bivalves, some can
open out, like the scallop and the mussel; for all such shells are
grown together on one side and are separate on the other, so as to
open and shut. Other bivalves are closed on both sides alike, like the
solen or razor-fish. Some testaceans there are, that are entirely
enveloped in shell and expose no portion of their flesh outside, as
the tethya or ascidians.
Again, in regard to the shells themselves, the testaceans
present differences when compared with one another. Some are
smooth-shelled, like the solen, the mussel, and some clams, viz. those
that are nicknamed 'milkshells', while others are rough-shelled,
such as the pool-oyster or edible oyster, the pinna, and certain
species of cockles, and the trumpet shells; and of these some are
ribbed, such as the scallop and a certain kind of clam or cockle,
and some are devoid of ribs, as the pinna and another species of clam.
Testaceans also differ from one another in regard to the thickness
or thinness of their shell, both as regards the shell in its
entirety and as regards specific parts of the shell, for instance, the
lips; for some have thin-lipped shells, like the mussel, and others
have thick-lipped shells, like the oyster. A property common to the
above mentioned, and, in fact, to all testaceans, is the smoothness of
their shells inside. Some also are capable of motion, like the
scallop, and indeed some aver that scallops can actually fly, owing to
the circumstance that they often jump right out of the apparatus by
means of which they are caught; others are incapable of motion and are
attached fast to some external object, as is the case with the
pinna. All the spiral-shaped testaceans can move and creep, and even
the limpet relaxes its hold to go in quest of food. In the case of the
univalves and the bivalves, the fleshy substance adheres to the
shell so tenaciously that it can only be removed by an effort; in
the case of the stromboids, it is more loosely attached. And a
peculiarity of all the stromboids is the spiral twist of the shell
in the part farthest away from the head; they are also furnished
from birth with an operculum. And, further, all stromboid testaceans
have their shells on the right hand side, and move not in the
direction of the spire, but the opposite way. Such are the diversities
observed in the external parts of these animals.
The internal structure is almost the same in all these
creatures, and in the stromboids especially; for it is in size that
these latter differ from one another, and in accidents of the nature
of excess or defect. And there is not much difference between most
of the univalves and bivalves; but, while those that open and shut
differ from one another but slightly, they differ considerably from
such as are incapable of motion. And this will be illustrated more
satisfactorily hereafter.
The spiral-shaped testaceans are all similarly constructed, but
differ from one another, as has been said, in the way of excess or
defect (for the larger species have larger and more conspicuous
organs, and the smaller have smaller and less conspicuous), and,
furthermore, in relative hardness or softness, and in other such
accidents or properties. All the stromboids, for instance, have the
flesh that extrudes from the mouth of the shell, hard and stiff;
some more, and some less. From the middle of this protrudes the head
and two horns, and these horns are large in the large species, but
exceedingly minute in the smaller ones. The head protrudes from them
all in the same way; and, if the animal be alarmed, the head draws
in again. Some of these creatures have a mouth and teeth, as the
snail; teeth sharp, and small, and delicate. They have also a
proboscis just like that of the fly; and the proboscis is
tongue-shaped. The ceryx and the purple murex have this organ firm and
solid; and just as the myops, or horse-fly, and the oestrus, or
gadfly, can pierce the skin of a quadruped, so is that proboscis
proportionately stronger in these testaceans; for they bore right
through the shells of other shell-fish on which they prey. The stomach
follows close upon the mouth, and, by the way, this organ in the snail
resembles a bird's crop. Underneath come two white firm formations,
mastoid or papillary in form; and similar formations are found in
the cuttle-fish also, only that they are of a firmer consistency in
the cuttle-fish. After the stomach comes an oesophagus, simple and
long, extending to the poppy or quasi-liver, which is in the innermost
recess of the shell. All these statements may be verified in the
case of the purple murex and the ceryx by observation within the whorl
of the shell. What comes next to the oesophagus is the gut; in fact,
the gut is continuous with the oesophagus, and runs its whole length
uncomplicated to the outlet of the residuum. The gut has its point
of origin in the region of the coil of the mecon, or so-called
'poppy', and is wider hereabouts (for remember, the mecon is for the
most part a sort of excretion in all testaceans); it then takes a bend
and runs up again towards the fleshy part, and terminates by the
side of the head, where the animal discharges its residuum; and this
holds good in the case of all stromboid testaceans, whether
terrestrial or marine. From the stomach there is drawn in a parallel
direction with the oesophagus, in the larger snails, a long white duct
enveloped in a membrane, resembling in colour the mastoid formations
higher up; and in it are nicks or interruptions, as in the egg-mass of
the crawfish, only, by the way, the duct of which we are treating is
white and the egg-mass of the crawfish is red. This formation has no
outlet nor duct, but is enveloped in a thin membrane with a narrow
cavity in its interior. And from the gut downward extend black and
rough formations, in close connexion, something like the formations in
the tortoise, only not so black. Marine snails, also, have these
formations, and the white ones, only that the formations are smaller
in the smaller species.
The non-spiral univalves and bivalves are in some respect
similar in construction, and in some respects dissimilar, to the
spiral testaceans. They all have a head and horns, and a mouth, and
the organ resembling a tongue; but these organs, in the smaller
species, are indiscernible owing to the minuteness of these animals,
and some are indiscernible even in the larger species when dead, or
when at rest and motionless. They all have the mecon, or poppy, but
not all in the same place, nor of equal size, nor similarly open to
observation; thus, the limpets have this organ deep down in the bottom
of the shell, and the bivalves at the hinge connecting the two valves.
They also have in all cases the hairy growths or beards, in a circular
form, as in the scallops. And, with regard to the so-called 'egg',
in those that have it, when they have it, it is situated in one of the
semi-circles of the periphery, as is the case with the white formation
in the snail; for this white formation in the snail corresponds to the
so-called egg of which we are speaking. But all these organs, as has
been stated, are distinctly traceable in the larger species, while
in the small ones they are in some cases almost, and in others
altogether, indiscernible. Hence they are most plainly visible in
the large scallops; and these are the bivalves that have one valve
flat-shaped, like the lid of a pot. The outlet of the excretion is
in all these animals (save for the exception to be afterwards related)
on one side; for there is a passage whereby the excretion passes
out. (And, remember, the mecon or poppy, as has been stated, is an
excretion in all these animals-an excretion enveloped in a
membrane. ) The so-called egg has no outlet in any of these
creatures, but is merely an excrescence in the fleshy mass; and it
is not situated in the same region with the gut, but the 'egg' is
situated on the right-hand side and the gut on the left. Such are
the relations of the anal vent in most of these animals; but in the
case of the wild limpet (called by some the 'sea-ear'), the residuum
issues beneath the shell, for the shell is perforated to give an
outlet. In this particular limpet the stomach is seen coming after the
mouth, and the egg-shaped formations are discernible. But for the
relative positions of these parts you are referred to my Treatise on
Anatomy.
The so-called carcinium or hermit crab is in a way intermediate
between the crustaceans and the testaceans. In its nature it resembles
the crawfish kind, and it is born simple of itself, but by its habit
of introducing itself into a shell and living there it resembles the
testaceans, and so appears to partake of the characters of both kinds.
In shape, to give a simple illustration, it resembles a spider, only
that the part below the head and thorax is larger in this creature
than in the spider. It has two thin red horns, and underneath these
horns two long eyes, not retreating inwards, nor turning sideways like
the eyes of the crab, but protruding straight out; and underneath
these eyes the mouth, and round about the mouth several hair-like
growths, and next after these two bifurcate legs or claws, whereby
it draws in objects towards itself, and two other legs on either side,
and a third small one. All below the thorax is soft, and when opened
in dissection is found to be sallow-coloured within. From the mouth
there runs a single passage right on to the stomach, but the passage
for the excretions is not discernible. The legs and the thorax are
hard, but not so hard as the legs and the thorax of the crab. It
does not adhere to its shell like the purple murex and the ceryx,
but can easily slip out of it. It is longer when found in the shell of
the stromboids than when found in the shell of the neritae.
And, by the way, the animal found in the shell of the neritae is a
separate species, like to the other in most respects; but of its
bifurcate feet or claws, the right-hand one is small and the left-hand
one is large, and it progresses chiefly by the aid of this latter
and larger one. (In the shells of these animals, and in certain
others, there is found a parasite whose mode of attachment is similar.
The particular one which we have just described is named the
cyllarus. )
The nerites has a smooth large round shell, and resembles the
ceryx in shape, only the poppy-juice is, in its case, not black but
red. It clings with great force near the middle. In calm weather,
then, they go free afield, but when the wind blows the carcinia take
shelter against the rocks: the neritae themselves cling fast like
limpets; and the same is the case with the haemorrhoid or aporrhaid
and all others of the like kind. And, by the way, they cling to the
rock, when they turn back their operculum, for this operculum seems
like a lid; in fact this structure represents the one part, in the
stromboids, of that which in the bivalves is a duplicate shell. The
interior of the animal is fleshy, and the mouth is inside. And it is
the same with the haemorrhoid, the purple murex, and all suchlike
animals.
Such of the little crabs as have the left foot or claw the
bigger of the two are found in the neritae, but not in the stromboids.
are some snail-shells which have inside them creatures resembling
those little crayfish that are also found in fresh water. These
creatures, however, differ in having the part inside the shells But as
to the characters, you are referred to my Treatise on Anatomy.
5
The urchins are devoid of flesh, and this is a character
peculiar to them; and while they are in all cases empty and devoid
of any flesh within, they are in all cases furnished with the black
formations. There are several species of the urchin, and one of
these is that which is made use of for food; this is the kind in which
are found the so-called eggs, large and edible, in the larger and
smaller specimens alike; for even when as yet very small they are
provided with them. There are two other species, the spatangus, and
the so-called bryssus, these animals are pelagic and scarce.
Further, there are the echinometrae, or 'mother-urchins', the
largest in size of all the species. In addition to these there is
another species, small in size, but furnished with large hard
spines; it lives in the sea at a depth of several fathoms; and is used
by some people as a specific for cases of strangury. In the
neighbourhood of Torone there are sea-urchins of a white colour,
shells, spines, eggs and all, and that are longer than the ordinary
sea-urchin. The spine in this species is not large nor strong, but
rather limp; and the black formations in connexion with the mouth
are more than usually numerous, and communicate with the external
duct, but not with one another; in point of fact, the animal is in a
manner divided up by them. The edible urchin moves with greatest
freedom and most often; and this is indicated by the fact that these
urchins have always something or other on their spines.
All urchins are supplied with eggs, but in some of the species the
eggs are exceedingly small and unfit for food. Singularly enough,
the urchin has what we may call its head and mouth down below, and a
place for the issue of the residuum up above; (and this same
property is common to all stromboids and to limpets). For the food
on which the creature lives lies down below; consequently the mouth
has a position well adapted for getting at the food, and the excretion
is above, near to the back of the shell. The urchin has, also, five
hollow teeth inside, and in the middle of these teeth a fleshy
substance serving the office of a tongue. Next to this comes the
oesophagus, and then the stomach, divided into five parts, and
filled with excretion, all the five parts uniting at the anal vent,
where the shell is perforated for an outlet. Underneath the stomach,
in another membrane, are the so-called eggs, identical in number in
all cases, and that number is always an odd number, to wit five. Up
above, the black formations are attached to the starting-point of
the teeth, and they are bitter to the taste, and unfit for food. A
similar or at least an analogous formation is found in many animals;
as, for instance, in the tortoise, the toad, the frog, the stromboids,
and, generally, in the molluscs; but the formation varies here and
there in colour, and in all cases is altogether uneatable, or more
or less unpalatable. In reality the mouth-apparatus of the urchin is
continuous from one end to the other, but to outward appearance it
is not so, but looks like a horn lantern with the panes of horn left
out. The urchin uses its spines as feet; for it rests its weight on
these, and then moving shifts from place to place.
6
The so-called tethyum or ascidian has of all these animals the
most remarkable characteristics. It is the only mollusc that has its
entire body concealed within its shell, and the shell is a substance
intermediate between hide and shell, so that it cuts like a piece of
hard leather. It is attached to rocks by its shell, and is provided
with two passages placed at a distance from one another, very minute
and hard to see, whereby it admits and discharges the sea-water; for
it has no visible excretion (whereas of shell fish in general some
resemble the urchin in this matter of excretion, and others are
provided with the so-called mecon, or poppy-juice). If the animal be
opened, it is found to have, in the first place, a tendinous
membrane running round inside the shell-like substance, and within
this membrane is the flesh-like substance of the ascidian, not
resembling that in other molluscs; but this flesh, to which I now
allude, is the same in all ascidia. And this substance is attached
in two places to the membrane and the skin, obliquely; and at the
point of attachment the space is narrowed from side to side, where the
fleshy substance stretches towards the passages that lead outwards
through the shell; and here it discharges and admits food and liquid
matter, just as it would if one of the passages were a mouth and the
other an anal vent; and one of the passages is somewhat wider than the
other Inside it has a pair of cavities, one on either side, a small
partition separating them; and one of these two cavities contains
the liquid. The creature has no other organ whether motor or
sensory, nor, as was said in the case of the others, is it furnished
with any organ connected with excretion, as other shell-fish are.
The colour of the ascidian is in some cases sallow, and in other cases
red.
There is, furthermore, the genus of the sea-nettles, peculiar in
its way. The sea-nettle, or sea-anemone, clings to rocks like
certain of the testaceans, but at times relaxes its hold. It has no
shell, but its entire body is fleshy. It is sensitive to touch, and,
if you put your hand to it, it will seize and cling to it, as the
cuttlefish would do with its feelers, and in such a way as to make the
flesh of your hand swell up. Its mouth is in the centre of its body,
and it lives adhering to the rock as an oyster to its shell. If any
little fish come up against it it it clings to it; in fact, just as
I described it above as doing to your hand, so it does to anything
edible that comes in its way; and it feeds upon sea-urchins and
scallops. Another species of the sea-nettle roams freely abroad. The
sea-nettle appears to be devoid altogether of excretion, and in this
respect it resembles a plant.
Of sea-nettles there are two species, the lesser and more
edible, and the large hard ones, such as are found in the
neighbourhood of Chalcis. In winter time their flesh is firm, and
accordingly they are sought after as articles of food, but in summer
weather they are worthless, for they become thin and watery, and if
you catch at them they break at once into bits, and cannot be taken
off the rocks entire; and being oppressed by the heat they tend to
slip back into the crevices of the rocks.
So much for the external and the internal organs of molluscs,
crustaceans, and testaceans.
7
We now proceed to treat of insects in like manner. This genus
comprises many species, and, though several kinds are clearly
related to one another, these are not classified under one common
designation, as in the case of the bee, the drone, the wasp, and all
such insects, and again as in the case of those that have their
wings in a sheath or shard, like the cockchafer, the carabus or
stag-beetle, the cantharis or blister-beetle, and the like.
Insects have three parts common to them all; the head, the trunk
containing the stomach, and a third part in betwixt these two,
corresponding to what in other creatures embraces chest and back. In
the majority of insects this intermediate part is single; but in the
long and multipedal insects it has practically the same number of
segments as of nicks.
All insects when cut in two continue to live, excepting such as
are naturally cold by nature, or such as from their minute size
chill rapidly; though, by the way, wasps notwithstanding their small
size continue living after severance. In conjunction with the middle
portion either the head or the stomach can live, but the head cannot
live by itself. Insects that are long in shape and many-footed can
live for a long while after being cut in twain, and the severed
portions can move in either direction, backwards or forwards; thus,
the hinder portion, if cut off, can crawl either in the direction of
the section or in the direction of the tail, as is observed in the
scolopendra.
All insects have eyes, but no other organ of sense discernible,
except that some insects have a kind of a tongue corresponding to a
similar organ common to all testaceans; and by this organ such insects
taste and imbibe their food. In some insects this organ is soft; in
other insects it is firm; as it is, by the way, in the purple-fish,
among testaceans. In the horsefly and the gadfly this organ is hard,
and indeed it is hard in most insects. In point of fact, such
insects as have no sting in the rear use this organ as a weapon, (and,
by the way, such insects as are provided with this organ are
unprovided with teeth, with the exception of a few insects); the fly
by a touch can draw blood with this organ, and the gnat can prick or
sting with it.
Certain insects are furnished with prickers or stings. Some
insects have the sting inside, as the bee and the wasp, others
outside, as the scorpion; and, by the way, this is the only insect
furnished with a long tail. And, further, the scorpion is furnished
with claws, as is also the creature resembling a scorpion found within
the pages of books.
In addition to their other organs, flying insects are furnished
with wings.
Some insects are dipterous or double-winged, as the fly;
others are tetrapterous or furnished with four wings, as the bee; and,
by the way, no insect with only two wings has a sting in the rear.
Again, some winged insects have a sheath or shard for their wings,
as the cockchafer; whereas in others the wings are unsheathed, as in
the bee. But in the case of all alike, flight is in no way modified by
tail-steerage, and the wing is devoid of quill-structure or division
of any kind.
Again, some insects have antennae in front of their eyes, as the
butterfly and the horned beetle. Such of them as have the power of
jumping have the hinder legs the longer; and these long hind-legs
whereby they jump bend backwards like the hind-legs of quadrupeds. All
insects have the belly different from the back; as, in fact, is the
case with all animals. The flesh of an insect's body is neither
shell-like nor is it like the internal substance of shell-covered
animals, nor is it like flesh in the ordinary sense of the term; but
it is a something intermediate in quality. Wherefore they have nor
spine, nor bone, nor sepia-bone, nor enveloping shell; but their
body by its hardness is its own protection and requires no
extraneous support. However, insects have a skin; but the skin is
exceedingly thin. These and such-like are the external organs of
insects.
Internally, next after the mouth, comes a gut, in the majority
of cases straight and simple down to the outlet of the residuum: but
in a few cases the gut is coiled. No insect is provided with any
viscera, or is supplied with fat; and these statements apply to all
animals devoid of blood. Some have a stomach also, and attached to
this the rest of the gut, either simple or convoluted as in the case
of the acris or grasshopper.
The tettix or cicada, alone of such creatures (and, in fact, alone
of all creatures), is unprovided with a mouth, but it is provided with
the tongue-like formation found in insects furnished with frontward
stings; and this formation in the cicada is long, continuous, and
devoid of any split; and by the aid of this the creature feeds on dew,
and on dew only, and in its stomach no excretion is ever found. Of the
cicada there are several kinds, and they differ from one another in
relative magnitude, and in this respect that the achetes or chirper is
provided with a cleft or aperture under the hypozoma and has in it a
membrane quite discernible, whilst the membrane is indiscernible in
the tettigonia.
Furthermore, there are some strange creatures to be found in the
sea, which from their rarity we are unable to classify. Experienced
fishermen affirm, some that they have at times seen in the sea animals
like sticks, black, rounded, and of the same thickness throughout;
others that they have seen creatures resembling shields, red in
colour, and furnished with fins packed close together; and others that
they have seen creatures resembling the male organ in shape and
size, with a pair of fins in the place of the testicles, and they aver
that on one occasion a creature of this description was brought up
on the end of a nightline.
So much then for the parts, external and internal, exceptional and
common, of all animals.
8
We now proceed to treat of the senses; for there are diversities
in animals with regard to the senses, seeing that some animals have
the use of all the senses, and others the use of a limited number of
them. The total number of the senses (for we have no experience of any
special sense not here included), is five: sight, hearing, smell,
taste, and touch.
Man, then, and all vivipara that have feet, and, further, all
red-blooded ovipara, appear to have the use of all the five senses,
except where some isolated species has been subjected to mutilation,
as in the case of the mole. For this animal is deprived of sight; it
has no eyes visible, but if the skin-a thick one, by the way-be
stripped off the head, about the place in the exterior where eyes
usually are, the eyes are found inside in a stunted condition,
furnished with all the parts found in ordinary eyes; that is to say,
we find there the black rim, and the fatty part surrounding it; but
all these parts are smaller than the same parts in ordinary visible
eyes. There is no external sign of the existence of these organs in
the mole, owing to the thickness of the skin drawn over them, so
that it would seem that the natural course of development were
congenitally arrested; (for extending from the brain at its junction
with the marrow are two strong sinewy ducts running past the sockets
of the eyes, and terminating at the upper eye-teeth). All the other
animals of the kinds above mentioned have a perception of colour and
of sound, and the senses of smell and taste; the fifth sense, that,
namely, of touch, is common to all animals whatsoever.
In some animals the organs of sense are plainly discernible; and
this is especially the case with the eyes. For animals have a
special locality for the eyes, and also a special locality for
hearing: that is to say, some animals have ears, while others have the
passage for sound discernible. It is the same with the sense of smell;
that is to say, some animals have nostrils, and others have only the
passages for smell, such as birds. It is the same also with the
organ of taste, the tongue. Of aquatic red-blooded animals, fishes
possess the organ of taste, namely the tongue, but it is in an
imperfect and amorphous form, in other words it is osseous and
undetached. In some fish the palate is fleshy, as in the fresh-water
carp, so that by an inattentive observer it might be mistaken for a
tongue.
There is no doubt but that fishes have the sense of taste, for a
great number of them delight in special flavours; and fishes freely
take the hook if it be baited with a piece of flesh from a tunny or
from any fat fish, obviously enjoying the taste and the eating of food
of this kind. Fishes have no visible organs for hearing or for
smell; for what might appear to indicate an organ for smell in the
region of the nostril has no communication with the brain. These
indications, in fact, in some cases lead nowhere, like blind alleys,
and in other cases lead only to the gills; but for all this fishes
undoubtedly hear and smell. For they are observed to run away from any
loud noise, such as would be made by the rowing of a galley, so as
to become easy of capture in their holes; for, by the way, though a
sound be very slight in the open air, it has a loud and alarming
resonance to creatures that hear under water. And this is shown in the
capture of the dolphin; for when the hunters have enclosed a shoal
of these fishes with a ring of their canoes, they set up from inside
the canoes a loud splashing in the water, and by so doing induce the
creatures to run in a shoal high and dry up on the beach, and so
capture them while stupefied with the noise. And yet, for all this,
the dolphin has no organ of hearing discernible. Furthermore, when
engaged in their craft, fishermen are particularly careful to make
no noise with oar or net; and after they have spied a shoal, they
let down their nets at a spot so far off that they count upon no noise
being likely to reach the shoal, occasioned either by oar or by the
surging of their boats through the water; and the crews are strictly
enjoined to preserve silence until the shoal has been surrounded. And,
at times, when they want the fish to crowd together, they adopt the
stratagem of the dolphin-hunter; in other words they clatter stones
together, that the fish may, in their fright, gather close into one
spot, and so they envelop them within their nets. (Before
surrounding them, then, they preserve silence, as was said; but, after
hemming the shoal in, they call on every man to shout out aloud and
make any kind of noise; for on hearing the noise and hubbub the fish
are sure to tumble into the nets from sheer fright. ) Further, when
fishermen see a shoal of fish feeding at a distance, disporting
themselves in calm bright weather on the surface of the water, if they
are anxious to descry the size of the fish and to learn what kind of a
fish it is, they may succeed in coming upon the shoal whilst yet
basking at the surface if they sail up without the slightest noise,
but if any man make a noise previously, the shoal will be seen to
scurry away in alarm. Again, there is a small river-fish called the
cottus or bullhead; this creature burrows under a rock, and fishers
catch it by clattering stones against the rock, and the fish,
bewildered at the noise, darts out of its hiding-place. From these
facts it is quite obvious that fishes can hear; and indeed some
people, from living near the sea and frequently witnessing such
phenomena, affirm that of all living creatures the fish is the
quickest of hearing. And, by the way, of all fishes the quickest of
hearing are the cestreus or mullet, the chremps, the labrax or
basse, the salpe or saupe, the chromis or sciaena, and such like.
Other fishes are less quick of hearing, and, as might be expected, are
more apt to be found living at the bottom of the sea.
The case is similar in regard to the sense of smell. Thus, as a
rule, fishes will not touch a bait that is not fresh, neither are they
all caught by one and the same bait, but they are severally caught
by baits suited to their several likings, and these baits they
distinguish by their sense of smell; and, by the way, some fishes
are attracted by malodorous baits, as the saupe, for instance, is
attracted by excrement. Again, a number of fishes live in caves; and
accordingly fishermen, when they want to entice them out, smear the
mouth of a cave with strong-smelling pickles, and the fish are Soon
attracted to the smell. And the eel is caught in a similar way; for
the fisherman lays down an earthen pot that has held pickles, after
inserting a 'weel' in the neck thereof. As a general rule, fishes
are especially attracted by savoury smells. For this reason, fishermen
roast the fleshy parts of the cuttle-fish and use it as bait on
account of its smell, for fish are peculiarly attracted by it; they
also bake the octopus and bait their fish-baskets or weels with it,
entirely, as they say, on account of its smell. Furthermore,
gregarious fishes, if fish washings or bilge-water be thrown
overboard, are observed to scud off to a distance, from apparent
dislike of the smell. And it is asserted that they can at once
detect by smell the presence of their own blood; and this faculty is
manifested by their hurrying off to a great distance whenever
fish-blood is spilt in the sea. And, as a general rule, if you bait
your weel with a stinking bait, the fish refuse to enter the weel or
even to draw near; but if you bait the weel with a fresh and savoury
bait, they come at once from long distances and swim into it. And
all this is particularly manifest in the dolphin; for, as was
stated, it has no visible organ of hearing, and yet it is captured
when stupefied with noise; and so, while it has no visible organ for
smell, it has the sense of smell remarkably keen. It is manifest,
then, that the animals above mentioned are in possession of all the
five senses.
All other animals may, with very few exceptions, be comprehended
within four genera: to wit, molluscs, crustaceans, testaceans, and
insects. Of these four genera, the mollusc, the crustacean, and the
insect have all the senses: at all events, they have sight, smell, and
taste. As for insects, both winged and wingless, they can detect the
presence of scented objects afar off, as for instance bees and
snipes detect the presence of honey at a distance; and do so
recognizing it by smell. Many insects are killed by the smell of
brimstone; ants, if the apertures to their dwellings be smeared with
powdered origanum and brimstone, quit their nests; and most insects
may be banished with burnt hart's horn, or better still by the burning
of the gum styrax. The cuttle-fish, the octopus, and the crawfish
may be caught by bait. The octopus, in fact, clings so tightly to
the rocks that it cannot be pulled off, but remains attached even when
the knife is employed to sever it; and yet, if you apply fleabane to
the creature, it drops off at the very smell of it. The facts are
similar in regard to taste. For the food that insects go in quest of
is of diverse kinds, and they do not all delight in the same flavours:
for instance, the bee never settles on a withered or wilted flower,
but on fresh and sweet ones; and the conops or gnat settles only on
acrid substances and not on sweet. The sense of touch, by the way,
as has been remarked, is common to all animals. Testaceans have the
senses of smell and taste. With regard to their possession of the
sense of smell, that is proved by the use of baits, e. g. in the case
of the purple-fish; for this creature is enticed by baits of rancid
meat, which it perceives and is attracted to from a great distance.
The proof that it possesses a sense of taste hangs by the proof of its
sense of smell; for whenever an animal is attracted to a thing by
perceiving its smell, it is sure to like the taste of it. Further, all
animals furnished with a mouth derive pleasure or pain from the
touch of sapid juices.
With regard to sight and hearing, we cannot make statements with
thorough confidence or on irrefutable evidence. However, the solen
or razor-fish, if you make a noise, appears to burrow in the sand, and
to hide himself deeper when he hears the approach of the iron rod (for
the animal, be it observed, juts a little out of its hole, while the
greater part of the body remains within),-and scallops, if you present
your finger near their open valves, close them tight again as though
they could see what you were doing. Furthermore, when fishermen are
laying bait for neritae, they always get to leeward of them, and never
speak a word while so engaged, under the firm impression that the
animal can smell and hear; and they assure us that, if any one
speaks aloud, the creature makes efforts to escape. With regard to
testaceans, of the walking or creeping species the urchin appears to
have the least developed sense of smell; and, of the stationary
species, the ascidian and the barnacle.
So much for the organs of sense in the general run of animals.
We now proceed to treat of voice.
9
Voice and sound are different from one another; and language
differs from voice and sound. The fact is that no animal can give
utterance to voice except by the action of the pharynx, and
consequently such animals as are devoid of lung have no voice; and
language is the articulation of vocal sounds by the instrumentality of
the tongue. Thus, the voice and larynx can emit vocal or vowel sounds;
non-vocal or consonantal sounds are made by the tongue and the lips;
and out of these vocal and non-vocal sounds language is composed.
Consequently, animals that have no tongue at all or that have a tongue
not freely detached, have neither voice nor language; although, by the
way, they may be enabled to make noises or sounds by other organs than
the tongue.
Insects, for instance, have no voice and no language, but they can
emit sound by internal air or wind, though not by the emission of
air or wind; for no insects are capable of respiration. But some of
them make a humming noise, like the bee and the other winged
insects; and others are said to sing, as the cicada. And all these
latter insects make their special noises by means of the membrane that
is underneath the 'hypozoma'-those insects, that is to say, whose body
is thus divided; as for instance, one species of cicada, which makes
the sound by means of the friction of the air. Flies and bees, and the
like, produce their special noise by opening and shutting their
wings in the act of flying; for the noise made is by the friction of
air between the wings when in motion. The noise made by grasshoppers
is produced by rubbing or reverberating with their long hind-legs.
No mollusc or crustacean can produce any natural voice or sound.
Fishes can produce no voice, for they have no lungs, nor windpipe
and pharynx; but they emit certain inarticulate sounds and squeaks,
which is what is called their 'voice', as the lyra or gurnard, and the
sciaena (for these fishes make a grunting kind of noise) and the
caprus or boar-fish in the river Achelous, and the chalcis and the
cuckoo-fish; for the chalcis makes a sort piping sound, and the
cuckoo-fish makes a sound greatly like the cry of the cuckoo, and is
nicknamed from the circumstance. The apparent voice in all these
fishes is a sound caused in some cases by a rubbing motion of their
gills, which by the way are prickly, or in other cases by internal
parts about their bellies; for they all have air or wind inside
them, by rubbing and moving which they produce the sounds. Some
cartilaginous fish seem to squeak.
But in these cases the term 'voice' is inappropriate; the more
correct expression would be 'sound'. For the scallop, when it goes
along supporting itself on the water, which is technically called
'flying', makes a whizzing sound; and so does the sea-swallow or
flying-fish: for this fish flies in the air, clean out of the water,
being furnished with fins broad and long. Just then as in the flight
of birds the sound made by their wings is obviously not voice, so is
it in the case of all these other creatures.
The dolphin, when taken out of the water, gives a squeak and moans
in the air, but these noises do not resemble those above mentioned.
For this creature has a voice (and can therefore utter vocal or
vowel sounds), for it is furnished with a lung and a windpipe; but its
tongue is not loose, nor has it lips, so as to give utterance to an
articulate sound (or a sound of vowel and consonant in combination. )
Of animals which are furnished with tongue and lung, the oviparous
quadrupeds produce a voice, but a feeble one; in some cases, a
shrill piping sound, like the serpent; in others, a thin faint cry; in
others, a low hiss, like the tortoise. The formation of the tongue
in the frog is exceptional. The front part of the tongue, which in
other animals is detached, is tightly fixed in the frog as it is in
all fishes; but the part towards the pharynx is freely detached, and
may, so to speak, be spat outwards, and it is with this that it
makes its peculiar croak. The croaking that goes on in the marsh is
the call of the males to the females at rutting time; and, by the way,
all animals have a special cry for the like end at the like season, as
is observed in the case of goats, swine, and sheep. (The bull-frog
makes its croaking noise by putting its under jaw on a level with
the surface of the water and extending its upper jaw to its utmost
capacity. The tension is so great that the upper jaw becomes
transparent, and the animal's eyes shine through the jaw like lamps;
for, by the way, the commerce of the sexes takes place usually in
the night time. ) Birds can utter vocal sounds; and such of them can
articulate best as have the tongue moderately flat, and also such as
have thin delicate tongues. In some cases, the male and the female
utter the same note; in other cases, different notes. The smaller
birds are more vocal and given to chirping than the larger ones; but
in the pairing season every species of bird becomes particularly
vocal. Some of them call when fighting, as the quail, others cry or
crow when challenging to combat, as the partridge, or when victorious,
as the barn-door cock. In some cases cock-birds and hens sing alike,
as is observed in the nightingale, only that the hen stops singing
when brooding or rearing her young; in other birds, the cocks sing
more than the hens; in fact, with barn-door fowls and quails, the cock
sings and the hen does not.
Viviparous quadrupeds utter vocal sounds of different kinds, but
they have no power of converse. In fact, this power, or language, is
peculiar to man. For while the capability of talking implies the
capability of uttering vocal sounds, the converse does not hold
good. Men that are born deaf are in all cases also dumb; that is, they
can make vocal sounds, but they cannot speak. Children, just as they
have no control over other parts, so have no control, at first, over
the tongue; but it is so far imperfect, and only frees and detaches
itself by degrees, so that in the interval children for the most
part lisp and stutter.
Vocal sounds and modes of language differ according to locality.
Vocal sounds are characterized chiefly by their pitch, whether high or
low, and the kinds of sound capable of being produced are identical
within the limits of one and the same species; but articulate sound,
that one might reasonably designate 'language', differs both in
various animals, and also in the same species according to diversity
of locality; as for instance, some partridges cackle, and some make
a shrill twittering noise. Of little birds, some sing a different note
from the parent birds, if they have been removed from the nest and
have heard other birds singing; and a mother-nightingale has been
observed to give lessons in singing to a young bird, from which
spectacle we might obviously infer that the song of the bird was not
equally congenital with mere voice, but was something capable of
modification and of improvement. Men have the same voice or vocal
sounds, but they differ from one another in speech or language.
The elephant makes a vocal sound of a windlike sort by the mouth
alone, unaided by the trunk, just like the sound of a man panting or
sighing; but, if it employ the trunk as well, the sound produced is
like that of a hoarse trumpet.
10
With regard to the sleeping and waking of animals, all creatures
that are red-blooded and provided with legs give sensible proof that
they go to sleep and that they waken up from sleep; for, as a matter
of fact, all animals that are furnished with eyelids shut them up when
they go to sleep. Furthermore, it would appear that not only do men
dream, but horses also, and dogs, and oxen; aye, and sheep, and goats,
and all viviparous quadrupeds; and dogs show their dreaming by barking
in their sleep. With regard to oviparous animals we cannot be sure
that they dream, but most undoubtedly they sleep. And the same may
be said of water animals, such as fishes, molluscs, crustaceans, to
wit crawfish and the like. These animals sleep without doubt, although
their sleep is of very short duration. The proof of their sleeping
cannot be got from the condition of their eyes-for none of these
creatures are furnished with eyelids-but can be obtained only from
their motionless repose.
Apart from the irritation caused by lice and what are nicknamed
fleas, fish are met with in a state so motionless that one might
easily catch them by hand; and, as a matter of fact, these little
creatures, if the fish remain long in one position, will attack them
in myriads and devour them. For these parasites are found in the
depths of the sea, and are so numerous that they devour any bait
made of fish's flesh if it be left long on the ground at the bottom;
and fishermen often draw up a cluster of them, all clinging on to
the bait.
But it is from the following facts that we may more reasonably
infer that fishes sleep. Very often it is possible to take a fish
off its guard so far as to catch hold of it or to give it a blow
unawares; and all the while that you are preparing to catch or
strike it, the fish is quite still but for a slight motion of the
tail. And it is quite obvious that the animal is sleeping, from its
movements if any disturbance be made during its repose; for it moves
just as you would expect in a creature suddenly awakened. Further,
owing to their being asleep, fish may be captured by torchlight. The
watchmen in the tunny-fishery often take advantage of the fish being
asleep to envelop them in a circle of nets; and it is quite obvious
that they were thus sleeping by their lying still and allowing the
glistening under-parts of their bodies to become visible, while the
capture is taking Place. They sleep in the night-time more than during
the day; and so soundly at night that you may cast the net without
making them stir. Fish, as a general rule, sleep close to the
ground, or to the sand or to a stone at the bottom, or after
concealing themselves under a rock or the ground. Flat fish go to
sleep in the sand; and they can be distinguished by the outlines of
their shapes in the sand, and are caught in this position by being
speared with pronged instruments. The basse, the chrysophrys or
gilt-head, the mullet, and fish of the like sort are often caught in
the daytime by the prong owing to their having been surprised when
sleeping; for it is scarcely probable that fish could be pronged while
awake. Cartilaginous fish sleep at times so soundly that they may be
caught by hand. The dolphin and the whale, and all such as are
furnished with a blow-hole, sleep with the blow-hole over the
surface of the water, and breathe through the blow-hole while they
keep up a quiet flapping of their fins; indeed, some mariners assure
us that they have actually heard the dolphin snoring.
Molluscs sleep like fishes, and crustaceans also. It is plain also
that insects sleep; for there can be no mistaking their condition of
motionless repose. In the bee the fact of its being asleep is very
obvious; for at night-time bees are at rest and cease to hum. But
the fact that insects sleep may be very well seen in the case of
common every-day creatures; for not only do they rest at night-time
from dimness of vision (and, by the way, all hard-eyed creatures see
but indistinctly), but even if a lighted candle be presented they
continue sleeping quite as soundly.
Of all animals man is most given to dreaming. Children and infants
do not dream, but in most cases dreaming comes on at the age of four
or five years. Instances have been known of full-grown men and women
that have never dreamed at all; in exceptional cases of this kind,
it has been observed that when a dream occurs in advanced life it
prognosticates either actual dissolution or a general break-up of
the system.
So much then for sensation and for the phenomena of sleeping and
of awakening.
11
With regard to sex, some animals are divided into male and female,
but others are not so divided but can only be said in a comparative
way to bring forth young and to be pregnant. In animals that live
confined to one spot there is no duality of sex; nor is there such, in
fact, in any testaceans. In molluscs and in crustaceans we find male
and female: and, indeed, in all animals furnished with feet, biped
or quadruped; in short, in all such as by copulation engender either
live young or egg or grub. In the several genera, with however certain
exceptions, there either absolutely is or absolutely is not a
duality of sex. Thus, in quadrupeds the duality is universal, while
the absence of such duality is universal in testaceans, and of these
creatures, as with plants, some individuals are fruitful and some
are not their lying still
But among insects and fishes, some cases are found wholly devoid
of this duality of sex. For instance, the eel is neither male nor
female, and can engender nothing. In fact, those who assert that
eels are at times found with hair-like or worm-like progeny
attached, make only random assertions from not having carefully
noticed the locality of such attachments. For no eel nor animal of
this kind is ever viviparous unless previously oviparous; and no eel
was ever yet seen with an egg. And animals that are viviparous have
their young in the womb and closely attached, and not in the belly;
for, if the embryo were kept in the belly, it would be subjected to
the process of digestion like ordinary food. When people rest
duality of sex in the eel on the assertion that the head of the male
is bigger and longer, and the head of the female smaller and more
snubbed, they are taking diversity of species for diversity of sex.
There are certain fish that are nicknamed the epitragiae, or
capon-fish, and, by the way, fish of this description are found in
fresh water, as the carp and the balagrus. This sort of fish never has
either roe or milt; but they are hard and fat all over, and are
furnished with a small gut; and these fish are regarded as of
super-excellent quality.
Again, just as in testaceans and in plants there is what bears and
engenders, but not what impregnates, so is it, among fishes, with
the psetta, the erythrinus, and the channe; for these fish are in
all cases found furnished with eggs.
As a general rule, in red-blooded animals furnished with feet
and not oviparous, the male is larger and longer-lived than the female
(except with the mule, where the female is longer-lived and bigger
than the male); whereas in oviparous and vermiparous creatures, as
in fishes and in insects, the female is larger than the male; as,
for instance, with the serpent, the phalangium or venom-spider, the
gecko, and the frog. The same difference in size of the sexes is found
in fishes, as, for instance, in the smaller cartilaginous fishes, in
the greater part of the gregarious species, and in all that live in
and about rocks. The fact that the female is longer-lived than the
male is inferred from the fact that female fishes are caught older
than males. Furthermore, in all animals the upper and front parts
are better, stronger, and more thoroughly equipped in the male than in
the female, whereas in the female those parts are the better that
may be termed hinder-parts or underparts. And this statement is
applicable to man and to all vivipara that have feet. Again, the
female is less muscular and less compactly jointed, and more thin
and delicate in the hair-that is, where hair is found; and, where
there is no hair, less strongly furnished in some analogous substance.
And the female is more flaccid in texture of flesh, and more
knock-kneed, and the shin-bones are thinner; and the feet are more
arched and hollow in such animals as are furnished with feet. And with
regard to voice, the female in all animals that are vocal has a
thinner and sharper voice than the male; except, by the way, with
kine, for the lowing and bellowing of the cow has a deeper note than
that of the bull. With regard to organs of defence and offence, such
as teeth, tusks, horns, spurs, and the like, these in some species the
male possesses and the female does not; as, for instance, the hind has
no horns, and where the cock-bird has a spur the hen is entirely
destitute of the organ; and in like manner the sow is devoid of tusks.
In other species such organs are found in both sexes, but are more
perfectly developed in the male; as, for instance, the horn of the
bull is more powerful than the horn of the cow.
Book V
1
As to the parts internal and external that all animals are
furnished withal, and further as to the senses, to voice, and sleep,
and the duality sex, all these topics have now been touched upon. It
now remains for us to discuss, duly and in order, their several
modes of propagation.
These modes are many and diverse, and in some respects are like,
and in other respects are unlike to one another. As we carried on
our previous discussion genus by genus, so we must attempt to follow
the same divisions in our present argument; only that whereas in the
former case we started with a consideration of the parts of man, in
the present case it behoves us to treat of man last of all because
he involves most discussion. We shall commence, then, with testaceans,
and then proceed to crustaceans, and then to the other genera in due
order; and these other genera are, severally, molluscs, and insects,
then fishes viviparous and fishes oviparous, and next birds; and
afterwards we shall treat of animals provided with feet, both such
as are oviparous and such as are viviparous, and we may observe that
some quadrupeds are viviparous, but that the only viviparous biped
is man.
Now there is one property that animals are found to have in common
with plants. For some plants are generated from the seed of plants,
whilst other plants are self-generated through the formation of some
elemental principle similar to a seed; and of these latter plants some
derive their nutriment from the ground, whilst others grow inside
other plants, as is mentioned, by the way, in my treatise on Botany.
So with animals, some spring from parent animals according to their
kind, whilst others grow spontaneously and not from kindred stock; and
of these instances of spontaneous generation some come from putrefying
earth or vegetable matter, as is the case with a number of insects,
while others are spontaneously generated in the inside of animals
out of the secretions of their several organs.
In animals where generation goes by heredity, wherever there is
duality of sex generation is due to copulation. In the group of
fishes, however, there are some that are neither male nor female,
and these, while they are identical generically with other fish,
differ from them specifically; but there are others that stand
altogether isolated and apart by themselves. Other fishes there are
that are always female and never male, and from them are conceived
what correspond to the wind-eggs in birds. Such eggs, by the way, in
birds are all unfruitful; but it is their nature to be independently
capable of generation up to the egg-stage, unless indeed there be some
other mode than the one familiar to us of intercourse with the male;
but concerning these topics we shall treat more precisely later on. In
the case of certain fishes, however, after they have spontaneously
generated eggs, these eggs develop into living animals; only that in
certain of these cases development is spontaneous, and in others is
not independent of the male; and the method of proceeding in regard to
these matters will set forth by and by, for the method is somewhat
like to the method followed in the case of birds. But whensoever
creatures are spontaneously generated, either in other animals, in the
soil, or on plants, or in the parts of these, and when such are
generated male and female, then from the copulation of such
spontaneously generated males and females there is generated a
something-a something never identical in shape with the parents, but a
something imperfect. For instance, the issue of copulation in lice
is nits; in flies, grubs; in fleas, grubs egg-like in shape; and
from these issues the parent-species is never reproduced, nor is any
animal produced at all, but the like nondescripts only.
First, then, we must proceed to treat of 'covering' in regard to
such animals as cover and are covered; and then after this to treat in
due order of other matters, both the exceptional and those of
general occurrence.
2
Those animals, then, cover and are covered in which there is a
duality of sex, and the modes of covering in such animals are not in
all cases similar nor analogous. For the red-blooded animals that
are viviparous and furnished with feet have in all cases organs
adapted for procreation, but the sexes do not in all cases come
together in like manner. Thus, opisthuretic animals copulate with a
rearward presentment, as is the case with the lion, the hare, and
the lynx; though, by the way, in the case of the hare, the female is
often observed to cover the male.
The case is similar in most other such animals; that is to say,
the majority of quadrupeds copulate as best they can, the male
mounting the female; and this is the only method of copulating adopted
by birds, though there are certain diversities of method observed even
in birds. For in some cases the female squats on the ground and the
male mounts on top of her, as is the case with the cock and hen
bustard, and the barn-door cock and hen; in other cases, the male
mounts without the female squatting, as with the male and female
crane; for, with these birds, the male mounts on to the back of the
female and covers her, and like the cock-sparrow consumes but very
little time in the operation. Of quadrupeds, bears perform the
operation lying prone on one another, in the same way as other
quadrupeds do while standing up; that is to say, with the belly of the
male pressed to the back of the female. Hedgehogs copulate erect,
belly to belly.
With regard to large-sized vivipara, the hind only very rarely
sustains the mounting of the stag to the full conclusion of the
operation, and the same is the case with the cow as regards the
bull, owing to the rigidity of the penis of the bull. In point of
fact, the females of these animals elicit the sperm of the male in the
act of withdrawing from underneath him; and, by the way, this
phenomenon has been observed in the case of the stag and hind,
domesticated, of course. Covering with the wolf is the same as with
the dog. Cats do not copulate with a rearward presentment on the
part of the female, but the male stands erect and the female puts
herself underneath him; and, by the way, the female cat is
peculiarly lecherous, and wheedles the male on to sexual commerce, and
caterwauls during the operation. Camels copulate with the female in
a sitting posture, and the male straddles over and covers her, not
with the hinder presentment on the female's part but like the other
quadrupeds mentioned above, and they pass the whole day long in the
operation; when thus engaged they retire to lonely spots, and none but
their keeper dare approach them. And, be it observed, the penis of the
camel is so sinewy that bow-strings are manufactured out of it.
Elephants, also, copulate in lonely places, and especially by
river-sides in their usual haunts; the female squats down, and
straddles with her legs, and the male mounts and covers her. The
seal covers like all opisthuretic animals, and in this species the
copulation extends over a lengthened time, as is the case with the dog
and bitch; and the penis in the male seal is exceptionally large.
3
Oviparous quadrupeds cover one another in the same way. That is to
say, in some cases the male mounts the female precisely as in the
viviparous animals, as is observed in both the land and the sea
tortoise. . . .
the pontilus, or by others the 'polypus' egg'; and the shell of this
creature is something like a separate valve of a deep scallop-shell.
This polypus lives very often near to the shore, and is apt to be
thrown up high and dry on the beach; under these circumstances it is
found with its shell detached, and dies by and by on dry land. These
polypods are small, and are shaped, as regards the form of their
bodies, like the bolbidia. There is another polypus that is placed
within a shell like a snail; it never comes out of the shell, but
lives inside the shell like the snail, and from time to time protrudes
its feelers.
So much for molluscs.
2
With regard to the Malacostraca or crustaceans, one species is
that of the crawfish, and a second, resembling the first, is that of
the lobster; the lobster differing from the crawfish in having
claws, and in a few other respects as well. Another species is that of
the carid, and another is that of the crab, and there are many kinds
both of carid and of crab.
Of carids there are the so-called cyphae, or 'hunch-backs', the
crangons, or squillae, and the little kind, or shrimps, and the little
kind do not develop into a larger kind.
Of the crab, the varieties are indefinite and incalculable. The
largest of all crabs is one nicknamed Maia, a second variety is the
pagarus and the crab of Heracleotis, and a third variety is the
fresh-water crab; the other varieties are smaller in size and
destitute of special designations. In the neighbourhood of Phoenice
there are found on the beach certain crabs that are nicknamed the
'horsemen', from their running with such speed that it is difficult to
overtake them; these crabs, when opened, are usually found empty,
and this emptiness may be put down to insufficiency of nutriment.
(There is another variety, small like the crab, but resembling in
shape the lobster. ) All these animals, as has been stated, have
their hard and shelly part outside, where the skin is in other
animals, and the fleshy part inside; and the belly is more or less
provided with lamellae, or little flaps, and the female here
deposits her spawn.
The crawfishes have five feet on either side, including the
claws at the end; and in like manner the crabs have ten feet in all,
including the claws. Of the carids, the hunch-backed, or prawns,
have five feet on either side, which are sharp-pointed-those towards
the head; and five others on either side in the region of the belly,
with their extremities flat; they are devoid of flaps on the under
side such as the crawfish has, but on the back they resemble the
crawfish. (See diagram. )It is very different with the crangon, or
squilla; it has four front legs on either side, then three thin ones
close behind on either side, and the rest of the body is for the most
part devoid of feet. (See diagram. ) Of all these animals the feet
bend out obliquely, as is the case with insects; and the claws, where
claws are found, turn inwards. The crawfish has a tail, and five fins
on it; and the round-backed carid has a tail and four fins; the
squilla also has fins at the tail on either side. In the case of both
the hump-backed carid and the squilla the middle art of the tail is
spinous: only that in the squilla the part is flattened and in the
carid it is sharp-pointed. Of all animals of this genus the crab is
the only one devoid of a rump; and, while the body of the carid and
the crawfish is elongated, that of the crab is rotund.
In the crawfish the male differs from the female: in the female
the first foot is bifurcate, in the male it is undivided; the
belly-fins in the female are large and overlapping on the neck,
while in the male they are smaller and do not overlap; and, further,
on the last feet of the male there are spur-like projections, large
and sharp, which projections in the female are small and smooth.
Both male and female have two antennae in front of the eyes, large and
rough, and other antennae underneath, small and smooth. The eyes of
all these creatures are hard and beady, and can move either to the
inner or to the outer side. The eyes of most crabs have a similar
facility of movement, or rather, in the crab this facility is
developed in a higher degree. (See diagram. )
The lobster is all over grey-coloured, with a mottling of black.
Its under or hinder feet, up to the big feet or claws, are eight in
number; then come the big feet, far larger and flatter at the tips
than the same organs in the crawfish; and these big feet or claws
are exceptional in their structure, for the right claw has the extreme
flat surface long and thin, while the left claw has the
corresponding surface thick and round. Each of the two claws,
divided at the end like a pair of jaws, has both below and above a set
of teeth: only that in the right claw they are all small and
saw-shaped, while in the left claw those at the apex are saw-shaped
and those within are molar-shaped, these latter being, in the under
part of the cleft claw, four teeth close together, and in the upper
part three teeth, not close together. Both right and left claws have
the upper part mobile, and bring it to bear against the lower one, and
both are curved like bandy-legs, being thereby adapted for
apprehension and constriction. Above the two large claws come two
others, covered with hair, a little underneath the mouth; and
underneath these the gill-like formations in the region of the
mouth, hairy and numerous. These organs the animal keeps in
perpetual motion; and the two hairy feet it bends and draws in towards
its mouth. The feet near the mouth are furnished also with delicate
outgrowing appendages. Like the crawfish, the lobster has two teeth,
or mandibles, and above these teeth are its antennae, long, but
shorter and finer by far than those of the crawfish, and then four
other antennae similar in shape, but shorter and finer than the
others. Over these antennae come the eyes, small and short, not
large like the eyes of the crawfish. Over the eyes is a peaky rough
projection like a forehead, larger than the same part in the crawfish;
in fact, the frontal part is more pointed and the thorax is much
broader in the lobster than in the crawfish, and the body in general
is smoother and more full of flesh. Of the eight feet, four are
bifurcate at the extremities, and four are undivided. The region of
the so-called neck is outwardly divided into five divisions, and
sixthly comes the flattened portion at the end, and this portion has
five flaps, or tail-fins; and the inner or under parts, into which the
female drops her spawn, are four in number and hairy, and on each of
the aforesaid parts is a spine turned outwards, short and straight.
The body in general and the region of the thorax in particular are
smooth, not rough as in the crawfish; but on the large claws the outer
portion has larger spines. There is no apparent difference between the
male and female, for they both have one claw, whichever it may be,
larger than the other, and neither male nor female is ever found
with both claws of the same size.
All crustaceans take in water close by the mouth. The crab
discharges it, closing up, as it does so, a small portion of the same,
and the crawfish discharges it by way of the gills; and, by the way,
the gill-shaped organs in the crawfish are very numerous.
The following properties are common to all crustaceans: they
have in all cases two teeth, or mandibles (for the front teeth in
the crawfish are two in number), and in all cases there is in the
mouth a small fleshy structure serving for a tongue; and the stomach
is close to the mouth, only that the crawfish has a little
oesophagus in front of the stomach, and there is a straight gut
attached to it. This gut, in the crawfish and its congeners, and in
the carids, extends in a straight line to the tail, and terminates
where the animal discharges the residuum, and where the female
deposits her spawn; in the crab it terminates where the flap is
situated, and in the centre of the flap. (And by the way, in all these
animals the spawn is deposited outside. ) Further, the female has the
place for the spawn running along the gut. And, again, all these
animals have, more or less, an organ termed the 'mytis', or
'poppyjuice'.
We must now proceed to review their several differentiae.
The crawfish then, as has been said, has two teeth, large and
hollow, in which is contained a juice resembling the mytis, and in
between the teeth is a fleshy substance, shaped like a tongue. After
the mouth comes a short oesophagus, and then a membranous stomach
attached to the oesophagus, and at the orifice Of the stomach are
three teeth, two facing one another and a third standing by itself
underneath. Coming off at a bend from the stomach is a gut, simple and
of equal thickness throughout the entire length of the body until it
reaches the anal vent.
These are all common properties of the crawfish, the carid, and
the crab; for the crab, be it remembered, has two teeth.
Again, the crawfish has a duct attached all the way from the chest
to the anal vent; and this duct is connected with the ovary in the
female, and with the seminal ducts in the male. This passage is
attached to the concave surface of the flesh in such a way that the
flesh is in betwixt the duct and the gut; for the gut is related to
the convexity and this duct to the concavity, pretty much as is
observed in quadrupeds. And the duct is identical in both the sexes;
that is to say, the duct in both is thin and white, and charged with a
sallow-coloured moisture, and is attached to the chest.
(The following are the properties of the egg and of the convolutes
in the carid. )
The male, by the way, differs from the female in regard to its
flesh, in having in connexion with the chest two separate and distinct
white substances, resembling in colour and conformation the
tentacles of the cuttle-fish, and they are convoluted like the 'poppy'
or quasi-liver of the trumpet-shell. These organs have their
starting-point in 'cotyledons' or papillae, which are situated under
the hindmost feet; and hereabouts the flesh is red and blood-coloured,
but is slippery to the touch and in so far unlike flesh. Off from
the convolute organ at the chest branches off another coil about as
thick as ordinary twine; and underneath there are two granular seminal
bodies in juxta-position with the gut. These are the organs of the
male. The female has red-coloured eggs, which are adjacent to the
stomach and to each side of the gut all along to the fleshy parts,
being enveloped in a thin membrane.
Such are the parts, internal and external, of the carid.
3
The inner organs of sanguineous animals happen to have specific
designations; for these animals have in all cases the inner viscera,
but this is not the case with the bloodless animals, but what they
have in common with red-blooded animals is the stomach, the
oesophagus, and the gut.
With regard to the crab, it has already been stated that it has
claws and feet, and their position has been set forth; furthermore,
for the most part they have the right claw bigger and stronger than
the left. It has also been stated' that in general the eyes of the
crab look sideways. Further, the trunk of the crab's body is single
and undivided, including its head and any other part it may possess.
Some crabs have eyes placed sideways on the upper part, immediately
under the back, and standing a long way apart, and some have their
eyes in the centre and close together, like the crabs of Heracleotis
and the so-called 'grannies'. The mouth lies underneath the eyes,
and inside it there are two teeth, as is the case with the crawfish,
only that in the crab the teeth are not rounded but long; and over the
teeth are two lids, and in betwixt them are structures such as the
crawfish has besides its teeth. The crab takes in water near by the
mouth, using the lids as a check to the inflow, and discharges the
water by two passages above the mouth, closing by means of the lids
the way by which it entered; and the two passage-ways are underneath
the eyes. When it has taken in water it closes its mouth by means of
both lids, and ejects the water in the way above described. Next after
the teeth comes the oesophagus, very short, so short in fact that
the stomach seems to come straightway after the mouth. Next after
the oesophagus comes the stomach, two-horned, to the centre of which
is attached a simple and delicate gut; and the gut terminates
outwards, at the operculum, as has been previously stated. (The crab
has the parts in between the lids in the neighbourhood of the teeth
similar to the same parts in the crawfish. ) Inside the trunk is a
sallow juice and some few little bodies, long and white, and others
spotted red. The male differs from the female in size and breadth, and
in respect of the ventral flap; for this is larger in the female
than in the male, and stands out further from the trunk, and is more
hairy (as is the case also with the female in the crawfish).
So much, then, for the organs of the malacostraca or crustacea.
4
With the ostracoderma, or testaceans, such as the land-snails
and the sea-snails, and all the 'oysters' so-called, and also with the
sea-urchin genus, the fleshy part, in such as have flesh, is similarly
situated to the fleshy part in the crustaceans; in other words, it
is inside the animal, and the shell is outside, and there is no hard
substance in the interior. As compared with one another the testaceans
present many diversities both in regard to their shells and to the
flesh within. Some of them have no flesh at all, as the sea-urchin;
others have flesh, but it is inside and wholly hidden, except the
head, as in the land-snails, and the so-called cocalia, and, among
pelagic animals, in the purple murex, the ceryx or trumpet-shell,
the sea-snail, and the spiral-shaped testaceans in general. Of the
rest, some are bivalved and some univalved; and by 'bivalves' I mean
such as are enclosed within two shells, and by 'univalved' such as are
enclosed within a single shell, and in these last the fleshy part is
exposed, as in the case of the limpet. Of the bivalves, some can
open out, like the scallop and the mussel; for all such shells are
grown together on one side and are separate on the other, so as to
open and shut. Other bivalves are closed on both sides alike, like the
solen or razor-fish. Some testaceans there are, that are entirely
enveloped in shell and expose no portion of their flesh outside, as
the tethya or ascidians.
Again, in regard to the shells themselves, the testaceans
present differences when compared with one another. Some are
smooth-shelled, like the solen, the mussel, and some clams, viz. those
that are nicknamed 'milkshells', while others are rough-shelled,
such as the pool-oyster or edible oyster, the pinna, and certain
species of cockles, and the trumpet shells; and of these some are
ribbed, such as the scallop and a certain kind of clam or cockle,
and some are devoid of ribs, as the pinna and another species of clam.
Testaceans also differ from one another in regard to the thickness
or thinness of their shell, both as regards the shell in its
entirety and as regards specific parts of the shell, for instance, the
lips; for some have thin-lipped shells, like the mussel, and others
have thick-lipped shells, like the oyster. A property common to the
above mentioned, and, in fact, to all testaceans, is the smoothness of
their shells inside. Some also are capable of motion, like the
scallop, and indeed some aver that scallops can actually fly, owing to
the circumstance that they often jump right out of the apparatus by
means of which they are caught; others are incapable of motion and are
attached fast to some external object, as is the case with the
pinna. All the spiral-shaped testaceans can move and creep, and even
the limpet relaxes its hold to go in quest of food. In the case of the
univalves and the bivalves, the fleshy substance adheres to the
shell so tenaciously that it can only be removed by an effort; in
the case of the stromboids, it is more loosely attached. And a
peculiarity of all the stromboids is the spiral twist of the shell
in the part farthest away from the head; they are also furnished
from birth with an operculum. And, further, all stromboid testaceans
have their shells on the right hand side, and move not in the
direction of the spire, but the opposite way. Such are the diversities
observed in the external parts of these animals.
The internal structure is almost the same in all these
creatures, and in the stromboids especially; for it is in size that
these latter differ from one another, and in accidents of the nature
of excess or defect. And there is not much difference between most
of the univalves and bivalves; but, while those that open and shut
differ from one another but slightly, they differ considerably from
such as are incapable of motion. And this will be illustrated more
satisfactorily hereafter.
The spiral-shaped testaceans are all similarly constructed, but
differ from one another, as has been said, in the way of excess or
defect (for the larger species have larger and more conspicuous
organs, and the smaller have smaller and less conspicuous), and,
furthermore, in relative hardness or softness, and in other such
accidents or properties. All the stromboids, for instance, have the
flesh that extrudes from the mouth of the shell, hard and stiff;
some more, and some less. From the middle of this protrudes the head
and two horns, and these horns are large in the large species, but
exceedingly minute in the smaller ones. The head protrudes from them
all in the same way; and, if the animal be alarmed, the head draws
in again. Some of these creatures have a mouth and teeth, as the
snail; teeth sharp, and small, and delicate. They have also a
proboscis just like that of the fly; and the proboscis is
tongue-shaped. The ceryx and the purple murex have this organ firm and
solid; and just as the myops, or horse-fly, and the oestrus, or
gadfly, can pierce the skin of a quadruped, so is that proboscis
proportionately stronger in these testaceans; for they bore right
through the shells of other shell-fish on which they prey. The stomach
follows close upon the mouth, and, by the way, this organ in the snail
resembles a bird's crop. Underneath come two white firm formations,
mastoid or papillary in form; and similar formations are found in
the cuttle-fish also, only that they are of a firmer consistency in
the cuttle-fish. After the stomach comes an oesophagus, simple and
long, extending to the poppy or quasi-liver, which is in the innermost
recess of the shell. All these statements may be verified in the
case of the purple murex and the ceryx by observation within the whorl
of the shell. What comes next to the oesophagus is the gut; in fact,
the gut is continuous with the oesophagus, and runs its whole length
uncomplicated to the outlet of the residuum. The gut has its point
of origin in the region of the coil of the mecon, or so-called
'poppy', and is wider hereabouts (for remember, the mecon is for the
most part a sort of excretion in all testaceans); it then takes a bend
and runs up again towards the fleshy part, and terminates by the
side of the head, where the animal discharges its residuum; and this
holds good in the case of all stromboid testaceans, whether
terrestrial or marine. From the stomach there is drawn in a parallel
direction with the oesophagus, in the larger snails, a long white duct
enveloped in a membrane, resembling in colour the mastoid formations
higher up; and in it are nicks or interruptions, as in the egg-mass of
the crawfish, only, by the way, the duct of which we are treating is
white and the egg-mass of the crawfish is red. This formation has no
outlet nor duct, but is enveloped in a thin membrane with a narrow
cavity in its interior. And from the gut downward extend black and
rough formations, in close connexion, something like the formations in
the tortoise, only not so black. Marine snails, also, have these
formations, and the white ones, only that the formations are smaller
in the smaller species.
The non-spiral univalves and bivalves are in some respect
similar in construction, and in some respects dissimilar, to the
spiral testaceans. They all have a head and horns, and a mouth, and
the organ resembling a tongue; but these organs, in the smaller
species, are indiscernible owing to the minuteness of these animals,
and some are indiscernible even in the larger species when dead, or
when at rest and motionless. They all have the mecon, or poppy, but
not all in the same place, nor of equal size, nor similarly open to
observation; thus, the limpets have this organ deep down in the bottom
of the shell, and the bivalves at the hinge connecting the two valves.
They also have in all cases the hairy growths or beards, in a circular
form, as in the scallops. And, with regard to the so-called 'egg',
in those that have it, when they have it, it is situated in one of the
semi-circles of the periphery, as is the case with the white formation
in the snail; for this white formation in the snail corresponds to the
so-called egg of which we are speaking. But all these organs, as has
been stated, are distinctly traceable in the larger species, while
in the small ones they are in some cases almost, and in others
altogether, indiscernible. Hence they are most plainly visible in
the large scallops; and these are the bivalves that have one valve
flat-shaped, like the lid of a pot. The outlet of the excretion is
in all these animals (save for the exception to be afterwards related)
on one side; for there is a passage whereby the excretion passes
out. (And, remember, the mecon or poppy, as has been stated, is an
excretion in all these animals-an excretion enveloped in a
membrane. ) The so-called egg has no outlet in any of these
creatures, but is merely an excrescence in the fleshy mass; and it
is not situated in the same region with the gut, but the 'egg' is
situated on the right-hand side and the gut on the left. Such are
the relations of the anal vent in most of these animals; but in the
case of the wild limpet (called by some the 'sea-ear'), the residuum
issues beneath the shell, for the shell is perforated to give an
outlet. In this particular limpet the stomach is seen coming after the
mouth, and the egg-shaped formations are discernible. But for the
relative positions of these parts you are referred to my Treatise on
Anatomy.
The so-called carcinium or hermit crab is in a way intermediate
between the crustaceans and the testaceans. In its nature it resembles
the crawfish kind, and it is born simple of itself, but by its habit
of introducing itself into a shell and living there it resembles the
testaceans, and so appears to partake of the characters of both kinds.
In shape, to give a simple illustration, it resembles a spider, only
that the part below the head and thorax is larger in this creature
than in the spider. It has two thin red horns, and underneath these
horns two long eyes, not retreating inwards, nor turning sideways like
the eyes of the crab, but protruding straight out; and underneath
these eyes the mouth, and round about the mouth several hair-like
growths, and next after these two bifurcate legs or claws, whereby
it draws in objects towards itself, and two other legs on either side,
and a third small one. All below the thorax is soft, and when opened
in dissection is found to be sallow-coloured within. From the mouth
there runs a single passage right on to the stomach, but the passage
for the excretions is not discernible. The legs and the thorax are
hard, but not so hard as the legs and the thorax of the crab. It
does not adhere to its shell like the purple murex and the ceryx,
but can easily slip out of it. It is longer when found in the shell of
the stromboids than when found in the shell of the neritae.
And, by the way, the animal found in the shell of the neritae is a
separate species, like to the other in most respects; but of its
bifurcate feet or claws, the right-hand one is small and the left-hand
one is large, and it progresses chiefly by the aid of this latter
and larger one. (In the shells of these animals, and in certain
others, there is found a parasite whose mode of attachment is similar.
The particular one which we have just described is named the
cyllarus. )
The nerites has a smooth large round shell, and resembles the
ceryx in shape, only the poppy-juice is, in its case, not black but
red. It clings with great force near the middle. In calm weather,
then, they go free afield, but when the wind blows the carcinia take
shelter against the rocks: the neritae themselves cling fast like
limpets; and the same is the case with the haemorrhoid or aporrhaid
and all others of the like kind. And, by the way, they cling to the
rock, when they turn back their operculum, for this operculum seems
like a lid; in fact this structure represents the one part, in the
stromboids, of that which in the bivalves is a duplicate shell. The
interior of the animal is fleshy, and the mouth is inside. And it is
the same with the haemorrhoid, the purple murex, and all suchlike
animals.
Such of the little crabs as have the left foot or claw the
bigger of the two are found in the neritae, but not in the stromboids.
are some snail-shells which have inside them creatures resembling
those little crayfish that are also found in fresh water. These
creatures, however, differ in having the part inside the shells But as
to the characters, you are referred to my Treatise on Anatomy.
5
The urchins are devoid of flesh, and this is a character
peculiar to them; and while they are in all cases empty and devoid
of any flesh within, they are in all cases furnished with the black
formations. There are several species of the urchin, and one of
these is that which is made use of for food; this is the kind in which
are found the so-called eggs, large and edible, in the larger and
smaller specimens alike; for even when as yet very small they are
provided with them. There are two other species, the spatangus, and
the so-called bryssus, these animals are pelagic and scarce.
Further, there are the echinometrae, or 'mother-urchins', the
largest in size of all the species. In addition to these there is
another species, small in size, but furnished with large hard
spines; it lives in the sea at a depth of several fathoms; and is used
by some people as a specific for cases of strangury. In the
neighbourhood of Torone there are sea-urchins of a white colour,
shells, spines, eggs and all, and that are longer than the ordinary
sea-urchin. The spine in this species is not large nor strong, but
rather limp; and the black formations in connexion with the mouth
are more than usually numerous, and communicate with the external
duct, but not with one another; in point of fact, the animal is in a
manner divided up by them. The edible urchin moves with greatest
freedom and most often; and this is indicated by the fact that these
urchins have always something or other on their spines.
All urchins are supplied with eggs, but in some of the species the
eggs are exceedingly small and unfit for food. Singularly enough,
the urchin has what we may call its head and mouth down below, and a
place for the issue of the residuum up above; (and this same
property is common to all stromboids and to limpets). For the food
on which the creature lives lies down below; consequently the mouth
has a position well adapted for getting at the food, and the excretion
is above, near to the back of the shell. The urchin has, also, five
hollow teeth inside, and in the middle of these teeth a fleshy
substance serving the office of a tongue. Next to this comes the
oesophagus, and then the stomach, divided into five parts, and
filled with excretion, all the five parts uniting at the anal vent,
where the shell is perforated for an outlet. Underneath the stomach,
in another membrane, are the so-called eggs, identical in number in
all cases, and that number is always an odd number, to wit five. Up
above, the black formations are attached to the starting-point of
the teeth, and they are bitter to the taste, and unfit for food. A
similar or at least an analogous formation is found in many animals;
as, for instance, in the tortoise, the toad, the frog, the stromboids,
and, generally, in the molluscs; but the formation varies here and
there in colour, and in all cases is altogether uneatable, or more
or less unpalatable. In reality the mouth-apparatus of the urchin is
continuous from one end to the other, but to outward appearance it
is not so, but looks like a horn lantern with the panes of horn left
out. The urchin uses its spines as feet; for it rests its weight on
these, and then moving shifts from place to place.
6
The so-called tethyum or ascidian has of all these animals the
most remarkable characteristics. It is the only mollusc that has its
entire body concealed within its shell, and the shell is a substance
intermediate between hide and shell, so that it cuts like a piece of
hard leather. It is attached to rocks by its shell, and is provided
with two passages placed at a distance from one another, very minute
and hard to see, whereby it admits and discharges the sea-water; for
it has no visible excretion (whereas of shell fish in general some
resemble the urchin in this matter of excretion, and others are
provided with the so-called mecon, or poppy-juice). If the animal be
opened, it is found to have, in the first place, a tendinous
membrane running round inside the shell-like substance, and within
this membrane is the flesh-like substance of the ascidian, not
resembling that in other molluscs; but this flesh, to which I now
allude, is the same in all ascidia. And this substance is attached
in two places to the membrane and the skin, obliquely; and at the
point of attachment the space is narrowed from side to side, where the
fleshy substance stretches towards the passages that lead outwards
through the shell; and here it discharges and admits food and liquid
matter, just as it would if one of the passages were a mouth and the
other an anal vent; and one of the passages is somewhat wider than the
other Inside it has a pair of cavities, one on either side, a small
partition separating them; and one of these two cavities contains
the liquid. The creature has no other organ whether motor or
sensory, nor, as was said in the case of the others, is it furnished
with any organ connected with excretion, as other shell-fish are.
The colour of the ascidian is in some cases sallow, and in other cases
red.
There is, furthermore, the genus of the sea-nettles, peculiar in
its way. The sea-nettle, or sea-anemone, clings to rocks like
certain of the testaceans, but at times relaxes its hold. It has no
shell, but its entire body is fleshy. It is sensitive to touch, and,
if you put your hand to it, it will seize and cling to it, as the
cuttlefish would do with its feelers, and in such a way as to make the
flesh of your hand swell up. Its mouth is in the centre of its body,
and it lives adhering to the rock as an oyster to its shell. If any
little fish come up against it it it clings to it; in fact, just as
I described it above as doing to your hand, so it does to anything
edible that comes in its way; and it feeds upon sea-urchins and
scallops. Another species of the sea-nettle roams freely abroad. The
sea-nettle appears to be devoid altogether of excretion, and in this
respect it resembles a plant.
Of sea-nettles there are two species, the lesser and more
edible, and the large hard ones, such as are found in the
neighbourhood of Chalcis. In winter time their flesh is firm, and
accordingly they are sought after as articles of food, but in summer
weather they are worthless, for they become thin and watery, and if
you catch at them they break at once into bits, and cannot be taken
off the rocks entire; and being oppressed by the heat they tend to
slip back into the crevices of the rocks.
So much for the external and the internal organs of molluscs,
crustaceans, and testaceans.
7
We now proceed to treat of insects in like manner. This genus
comprises many species, and, though several kinds are clearly
related to one another, these are not classified under one common
designation, as in the case of the bee, the drone, the wasp, and all
such insects, and again as in the case of those that have their
wings in a sheath or shard, like the cockchafer, the carabus or
stag-beetle, the cantharis or blister-beetle, and the like.
Insects have three parts common to them all; the head, the trunk
containing the stomach, and a third part in betwixt these two,
corresponding to what in other creatures embraces chest and back. In
the majority of insects this intermediate part is single; but in the
long and multipedal insects it has practically the same number of
segments as of nicks.
All insects when cut in two continue to live, excepting such as
are naturally cold by nature, or such as from their minute size
chill rapidly; though, by the way, wasps notwithstanding their small
size continue living after severance. In conjunction with the middle
portion either the head or the stomach can live, but the head cannot
live by itself. Insects that are long in shape and many-footed can
live for a long while after being cut in twain, and the severed
portions can move in either direction, backwards or forwards; thus,
the hinder portion, if cut off, can crawl either in the direction of
the section or in the direction of the tail, as is observed in the
scolopendra.
All insects have eyes, but no other organ of sense discernible,
except that some insects have a kind of a tongue corresponding to a
similar organ common to all testaceans; and by this organ such insects
taste and imbibe their food. In some insects this organ is soft; in
other insects it is firm; as it is, by the way, in the purple-fish,
among testaceans. In the horsefly and the gadfly this organ is hard,
and indeed it is hard in most insects. In point of fact, such
insects as have no sting in the rear use this organ as a weapon, (and,
by the way, such insects as are provided with this organ are
unprovided with teeth, with the exception of a few insects); the fly
by a touch can draw blood with this organ, and the gnat can prick or
sting with it.
Certain insects are furnished with prickers or stings. Some
insects have the sting inside, as the bee and the wasp, others
outside, as the scorpion; and, by the way, this is the only insect
furnished with a long tail. And, further, the scorpion is furnished
with claws, as is also the creature resembling a scorpion found within
the pages of books.
In addition to their other organs, flying insects are furnished
with wings.
Some insects are dipterous or double-winged, as the fly;
others are tetrapterous or furnished with four wings, as the bee; and,
by the way, no insect with only two wings has a sting in the rear.
Again, some winged insects have a sheath or shard for their wings,
as the cockchafer; whereas in others the wings are unsheathed, as in
the bee. But in the case of all alike, flight is in no way modified by
tail-steerage, and the wing is devoid of quill-structure or division
of any kind.
Again, some insects have antennae in front of their eyes, as the
butterfly and the horned beetle. Such of them as have the power of
jumping have the hinder legs the longer; and these long hind-legs
whereby they jump bend backwards like the hind-legs of quadrupeds. All
insects have the belly different from the back; as, in fact, is the
case with all animals. The flesh of an insect's body is neither
shell-like nor is it like the internal substance of shell-covered
animals, nor is it like flesh in the ordinary sense of the term; but
it is a something intermediate in quality. Wherefore they have nor
spine, nor bone, nor sepia-bone, nor enveloping shell; but their
body by its hardness is its own protection and requires no
extraneous support. However, insects have a skin; but the skin is
exceedingly thin. These and such-like are the external organs of
insects.
Internally, next after the mouth, comes a gut, in the majority
of cases straight and simple down to the outlet of the residuum: but
in a few cases the gut is coiled. No insect is provided with any
viscera, or is supplied with fat; and these statements apply to all
animals devoid of blood. Some have a stomach also, and attached to
this the rest of the gut, either simple or convoluted as in the case
of the acris or grasshopper.
The tettix or cicada, alone of such creatures (and, in fact, alone
of all creatures), is unprovided with a mouth, but it is provided with
the tongue-like formation found in insects furnished with frontward
stings; and this formation in the cicada is long, continuous, and
devoid of any split; and by the aid of this the creature feeds on dew,
and on dew only, and in its stomach no excretion is ever found. Of the
cicada there are several kinds, and they differ from one another in
relative magnitude, and in this respect that the achetes or chirper is
provided with a cleft or aperture under the hypozoma and has in it a
membrane quite discernible, whilst the membrane is indiscernible in
the tettigonia.
Furthermore, there are some strange creatures to be found in the
sea, which from their rarity we are unable to classify. Experienced
fishermen affirm, some that they have at times seen in the sea animals
like sticks, black, rounded, and of the same thickness throughout;
others that they have seen creatures resembling shields, red in
colour, and furnished with fins packed close together; and others that
they have seen creatures resembling the male organ in shape and
size, with a pair of fins in the place of the testicles, and they aver
that on one occasion a creature of this description was brought up
on the end of a nightline.
So much then for the parts, external and internal, exceptional and
common, of all animals.
8
We now proceed to treat of the senses; for there are diversities
in animals with regard to the senses, seeing that some animals have
the use of all the senses, and others the use of a limited number of
them. The total number of the senses (for we have no experience of any
special sense not here included), is five: sight, hearing, smell,
taste, and touch.
Man, then, and all vivipara that have feet, and, further, all
red-blooded ovipara, appear to have the use of all the five senses,
except where some isolated species has been subjected to mutilation,
as in the case of the mole. For this animal is deprived of sight; it
has no eyes visible, but if the skin-a thick one, by the way-be
stripped off the head, about the place in the exterior where eyes
usually are, the eyes are found inside in a stunted condition,
furnished with all the parts found in ordinary eyes; that is to say,
we find there the black rim, and the fatty part surrounding it; but
all these parts are smaller than the same parts in ordinary visible
eyes. There is no external sign of the existence of these organs in
the mole, owing to the thickness of the skin drawn over them, so
that it would seem that the natural course of development were
congenitally arrested; (for extending from the brain at its junction
with the marrow are two strong sinewy ducts running past the sockets
of the eyes, and terminating at the upper eye-teeth). All the other
animals of the kinds above mentioned have a perception of colour and
of sound, and the senses of smell and taste; the fifth sense, that,
namely, of touch, is common to all animals whatsoever.
In some animals the organs of sense are plainly discernible; and
this is especially the case with the eyes. For animals have a
special locality for the eyes, and also a special locality for
hearing: that is to say, some animals have ears, while others have the
passage for sound discernible. It is the same with the sense of smell;
that is to say, some animals have nostrils, and others have only the
passages for smell, such as birds. It is the same also with the
organ of taste, the tongue. Of aquatic red-blooded animals, fishes
possess the organ of taste, namely the tongue, but it is in an
imperfect and amorphous form, in other words it is osseous and
undetached. In some fish the palate is fleshy, as in the fresh-water
carp, so that by an inattentive observer it might be mistaken for a
tongue.
There is no doubt but that fishes have the sense of taste, for a
great number of them delight in special flavours; and fishes freely
take the hook if it be baited with a piece of flesh from a tunny or
from any fat fish, obviously enjoying the taste and the eating of food
of this kind. Fishes have no visible organs for hearing or for
smell; for what might appear to indicate an organ for smell in the
region of the nostril has no communication with the brain. These
indications, in fact, in some cases lead nowhere, like blind alleys,
and in other cases lead only to the gills; but for all this fishes
undoubtedly hear and smell. For they are observed to run away from any
loud noise, such as would be made by the rowing of a galley, so as
to become easy of capture in their holes; for, by the way, though a
sound be very slight in the open air, it has a loud and alarming
resonance to creatures that hear under water. And this is shown in the
capture of the dolphin; for when the hunters have enclosed a shoal
of these fishes with a ring of their canoes, they set up from inside
the canoes a loud splashing in the water, and by so doing induce the
creatures to run in a shoal high and dry up on the beach, and so
capture them while stupefied with the noise. And yet, for all this,
the dolphin has no organ of hearing discernible. Furthermore, when
engaged in their craft, fishermen are particularly careful to make
no noise with oar or net; and after they have spied a shoal, they
let down their nets at a spot so far off that they count upon no noise
being likely to reach the shoal, occasioned either by oar or by the
surging of their boats through the water; and the crews are strictly
enjoined to preserve silence until the shoal has been surrounded. And,
at times, when they want the fish to crowd together, they adopt the
stratagem of the dolphin-hunter; in other words they clatter stones
together, that the fish may, in their fright, gather close into one
spot, and so they envelop them within their nets. (Before
surrounding them, then, they preserve silence, as was said; but, after
hemming the shoal in, they call on every man to shout out aloud and
make any kind of noise; for on hearing the noise and hubbub the fish
are sure to tumble into the nets from sheer fright. ) Further, when
fishermen see a shoal of fish feeding at a distance, disporting
themselves in calm bright weather on the surface of the water, if they
are anxious to descry the size of the fish and to learn what kind of a
fish it is, they may succeed in coming upon the shoal whilst yet
basking at the surface if they sail up without the slightest noise,
but if any man make a noise previously, the shoal will be seen to
scurry away in alarm. Again, there is a small river-fish called the
cottus or bullhead; this creature burrows under a rock, and fishers
catch it by clattering stones against the rock, and the fish,
bewildered at the noise, darts out of its hiding-place. From these
facts it is quite obvious that fishes can hear; and indeed some
people, from living near the sea and frequently witnessing such
phenomena, affirm that of all living creatures the fish is the
quickest of hearing. And, by the way, of all fishes the quickest of
hearing are the cestreus or mullet, the chremps, the labrax or
basse, the salpe or saupe, the chromis or sciaena, and such like.
Other fishes are less quick of hearing, and, as might be expected, are
more apt to be found living at the bottom of the sea.
The case is similar in regard to the sense of smell. Thus, as a
rule, fishes will not touch a bait that is not fresh, neither are they
all caught by one and the same bait, but they are severally caught
by baits suited to their several likings, and these baits they
distinguish by their sense of smell; and, by the way, some fishes
are attracted by malodorous baits, as the saupe, for instance, is
attracted by excrement. Again, a number of fishes live in caves; and
accordingly fishermen, when they want to entice them out, smear the
mouth of a cave with strong-smelling pickles, and the fish are Soon
attracted to the smell. And the eel is caught in a similar way; for
the fisherman lays down an earthen pot that has held pickles, after
inserting a 'weel' in the neck thereof. As a general rule, fishes
are especially attracted by savoury smells. For this reason, fishermen
roast the fleshy parts of the cuttle-fish and use it as bait on
account of its smell, for fish are peculiarly attracted by it; they
also bake the octopus and bait their fish-baskets or weels with it,
entirely, as they say, on account of its smell. Furthermore,
gregarious fishes, if fish washings or bilge-water be thrown
overboard, are observed to scud off to a distance, from apparent
dislike of the smell. And it is asserted that they can at once
detect by smell the presence of their own blood; and this faculty is
manifested by their hurrying off to a great distance whenever
fish-blood is spilt in the sea. And, as a general rule, if you bait
your weel with a stinking bait, the fish refuse to enter the weel or
even to draw near; but if you bait the weel with a fresh and savoury
bait, they come at once from long distances and swim into it. And
all this is particularly manifest in the dolphin; for, as was
stated, it has no visible organ of hearing, and yet it is captured
when stupefied with noise; and so, while it has no visible organ for
smell, it has the sense of smell remarkably keen. It is manifest,
then, that the animals above mentioned are in possession of all the
five senses.
All other animals may, with very few exceptions, be comprehended
within four genera: to wit, molluscs, crustaceans, testaceans, and
insects. Of these four genera, the mollusc, the crustacean, and the
insect have all the senses: at all events, they have sight, smell, and
taste. As for insects, both winged and wingless, they can detect the
presence of scented objects afar off, as for instance bees and
snipes detect the presence of honey at a distance; and do so
recognizing it by smell. Many insects are killed by the smell of
brimstone; ants, if the apertures to their dwellings be smeared with
powdered origanum and brimstone, quit their nests; and most insects
may be banished with burnt hart's horn, or better still by the burning
of the gum styrax. The cuttle-fish, the octopus, and the crawfish
may be caught by bait. The octopus, in fact, clings so tightly to
the rocks that it cannot be pulled off, but remains attached even when
the knife is employed to sever it; and yet, if you apply fleabane to
the creature, it drops off at the very smell of it. The facts are
similar in regard to taste. For the food that insects go in quest of
is of diverse kinds, and they do not all delight in the same flavours:
for instance, the bee never settles on a withered or wilted flower,
but on fresh and sweet ones; and the conops or gnat settles only on
acrid substances and not on sweet. The sense of touch, by the way,
as has been remarked, is common to all animals. Testaceans have the
senses of smell and taste. With regard to their possession of the
sense of smell, that is proved by the use of baits, e. g. in the case
of the purple-fish; for this creature is enticed by baits of rancid
meat, which it perceives and is attracted to from a great distance.
The proof that it possesses a sense of taste hangs by the proof of its
sense of smell; for whenever an animal is attracted to a thing by
perceiving its smell, it is sure to like the taste of it. Further, all
animals furnished with a mouth derive pleasure or pain from the
touch of sapid juices.
With regard to sight and hearing, we cannot make statements with
thorough confidence or on irrefutable evidence. However, the solen
or razor-fish, if you make a noise, appears to burrow in the sand, and
to hide himself deeper when he hears the approach of the iron rod (for
the animal, be it observed, juts a little out of its hole, while the
greater part of the body remains within),-and scallops, if you present
your finger near their open valves, close them tight again as though
they could see what you were doing. Furthermore, when fishermen are
laying bait for neritae, they always get to leeward of them, and never
speak a word while so engaged, under the firm impression that the
animal can smell and hear; and they assure us that, if any one
speaks aloud, the creature makes efforts to escape. With regard to
testaceans, of the walking or creeping species the urchin appears to
have the least developed sense of smell; and, of the stationary
species, the ascidian and the barnacle.
So much for the organs of sense in the general run of animals.
We now proceed to treat of voice.
9
Voice and sound are different from one another; and language
differs from voice and sound. The fact is that no animal can give
utterance to voice except by the action of the pharynx, and
consequently such animals as are devoid of lung have no voice; and
language is the articulation of vocal sounds by the instrumentality of
the tongue. Thus, the voice and larynx can emit vocal or vowel sounds;
non-vocal or consonantal sounds are made by the tongue and the lips;
and out of these vocal and non-vocal sounds language is composed.
Consequently, animals that have no tongue at all or that have a tongue
not freely detached, have neither voice nor language; although, by the
way, they may be enabled to make noises or sounds by other organs than
the tongue.
Insects, for instance, have no voice and no language, but they can
emit sound by internal air or wind, though not by the emission of
air or wind; for no insects are capable of respiration. But some of
them make a humming noise, like the bee and the other winged
insects; and others are said to sing, as the cicada. And all these
latter insects make their special noises by means of the membrane that
is underneath the 'hypozoma'-those insects, that is to say, whose body
is thus divided; as for instance, one species of cicada, which makes
the sound by means of the friction of the air. Flies and bees, and the
like, produce their special noise by opening and shutting their
wings in the act of flying; for the noise made is by the friction of
air between the wings when in motion. The noise made by grasshoppers
is produced by rubbing or reverberating with their long hind-legs.
No mollusc or crustacean can produce any natural voice or sound.
Fishes can produce no voice, for they have no lungs, nor windpipe
and pharynx; but they emit certain inarticulate sounds and squeaks,
which is what is called their 'voice', as the lyra or gurnard, and the
sciaena (for these fishes make a grunting kind of noise) and the
caprus or boar-fish in the river Achelous, and the chalcis and the
cuckoo-fish; for the chalcis makes a sort piping sound, and the
cuckoo-fish makes a sound greatly like the cry of the cuckoo, and is
nicknamed from the circumstance. The apparent voice in all these
fishes is a sound caused in some cases by a rubbing motion of their
gills, which by the way are prickly, or in other cases by internal
parts about their bellies; for they all have air or wind inside
them, by rubbing and moving which they produce the sounds. Some
cartilaginous fish seem to squeak.
But in these cases the term 'voice' is inappropriate; the more
correct expression would be 'sound'. For the scallop, when it goes
along supporting itself on the water, which is technically called
'flying', makes a whizzing sound; and so does the sea-swallow or
flying-fish: for this fish flies in the air, clean out of the water,
being furnished with fins broad and long. Just then as in the flight
of birds the sound made by their wings is obviously not voice, so is
it in the case of all these other creatures.
The dolphin, when taken out of the water, gives a squeak and moans
in the air, but these noises do not resemble those above mentioned.
For this creature has a voice (and can therefore utter vocal or
vowel sounds), for it is furnished with a lung and a windpipe; but its
tongue is not loose, nor has it lips, so as to give utterance to an
articulate sound (or a sound of vowel and consonant in combination. )
Of animals which are furnished with tongue and lung, the oviparous
quadrupeds produce a voice, but a feeble one; in some cases, a
shrill piping sound, like the serpent; in others, a thin faint cry; in
others, a low hiss, like the tortoise. The formation of the tongue
in the frog is exceptional. The front part of the tongue, which in
other animals is detached, is tightly fixed in the frog as it is in
all fishes; but the part towards the pharynx is freely detached, and
may, so to speak, be spat outwards, and it is with this that it
makes its peculiar croak. The croaking that goes on in the marsh is
the call of the males to the females at rutting time; and, by the way,
all animals have a special cry for the like end at the like season, as
is observed in the case of goats, swine, and sheep. (The bull-frog
makes its croaking noise by putting its under jaw on a level with
the surface of the water and extending its upper jaw to its utmost
capacity. The tension is so great that the upper jaw becomes
transparent, and the animal's eyes shine through the jaw like lamps;
for, by the way, the commerce of the sexes takes place usually in
the night time. ) Birds can utter vocal sounds; and such of them can
articulate best as have the tongue moderately flat, and also such as
have thin delicate tongues. In some cases, the male and the female
utter the same note; in other cases, different notes. The smaller
birds are more vocal and given to chirping than the larger ones; but
in the pairing season every species of bird becomes particularly
vocal. Some of them call when fighting, as the quail, others cry or
crow when challenging to combat, as the partridge, or when victorious,
as the barn-door cock. In some cases cock-birds and hens sing alike,
as is observed in the nightingale, only that the hen stops singing
when brooding or rearing her young; in other birds, the cocks sing
more than the hens; in fact, with barn-door fowls and quails, the cock
sings and the hen does not.
Viviparous quadrupeds utter vocal sounds of different kinds, but
they have no power of converse. In fact, this power, or language, is
peculiar to man. For while the capability of talking implies the
capability of uttering vocal sounds, the converse does not hold
good. Men that are born deaf are in all cases also dumb; that is, they
can make vocal sounds, but they cannot speak. Children, just as they
have no control over other parts, so have no control, at first, over
the tongue; but it is so far imperfect, and only frees and detaches
itself by degrees, so that in the interval children for the most
part lisp and stutter.
Vocal sounds and modes of language differ according to locality.
Vocal sounds are characterized chiefly by their pitch, whether high or
low, and the kinds of sound capable of being produced are identical
within the limits of one and the same species; but articulate sound,
that one might reasonably designate 'language', differs both in
various animals, and also in the same species according to diversity
of locality; as for instance, some partridges cackle, and some make
a shrill twittering noise. Of little birds, some sing a different note
from the parent birds, if they have been removed from the nest and
have heard other birds singing; and a mother-nightingale has been
observed to give lessons in singing to a young bird, from which
spectacle we might obviously infer that the song of the bird was not
equally congenital with mere voice, but was something capable of
modification and of improvement. Men have the same voice or vocal
sounds, but they differ from one another in speech or language.
The elephant makes a vocal sound of a windlike sort by the mouth
alone, unaided by the trunk, just like the sound of a man panting or
sighing; but, if it employ the trunk as well, the sound produced is
like that of a hoarse trumpet.
10
With regard to the sleeping and waking of animals, all creatures
that are red-blooded and provided with legs give sensible proof that
they go to sleep and that they waken up from sleep; for, as a matter
of fact, all animals that are furnished with eyelids shut them up when
they go to sleep. Furthermore, it would appear that not only do men
dream, but horses also, and dogs, and oxen; aye, and sheep, and goats,
and all viviparous quadrupeds; and dogs show their dreaming by barking
in their sleep. With regard to oviparous animals we cannot be sure
that they dream, but most undoubtedly they sleep. And the same may
be said of water animals, such as fishes, molluscs, crustaceans, to
wit crawfish and the like. These animals sleep without doubt, although
their sleep is of very short duration. The proof of their sleeping
cannot be got from the condition of their eyes-for none of these
creatures are furnished with eyelids-but can be obtained only from
their motionless repose.
Apart from the irritation caused by lice and what are nicknamed
fleas, fish are met with in a state so motionless that one might
easily catch them by hand; and, as a matter of fact, these little
creatures, if the fish remain long in one position, will attack them
in myriads and devour them. For these parasites are found in the
depths of the sea, and are so numerous that they devour any bait
made of fish's flesh if it be left long on the ground at the bottom;
and fishermen often draw up a cluster of them, all clinging on to
the bait.
But it is from the following facts that we may more reasonably
infer that fishes sleep. Very often it is possible to take a fish
off its guard so far as to catch hold of it or to give it a blow
unawares; and all the while that you are preparing to catch or
strike it, the fish is quite still but for a slight motion of the
tail. And it is quite obvious that the animal is sleeping, from its
movements if any disturbance be made during its repose; for it moves
just as you would expect in a creature suddenly awakened. Further,
owing to their being asleep, fish may be captured by torchlight. The
watchmen in the tunny-fishery often take advantage of the fish being
asleep to envelop them in a circle of nets; and it is quite obvious
that they were thus sleeping by their lying still and allowing the
glistening under-parts of their bodies to become visible, while the
capture is taking Place. They sleep in the night-time more than during
the day; and so soundly at night that you may cast the net without
making them stir. Fish, as a general rule, sleep close to the
ground, or to the sand or to a stone at the bottom, or after
concealing themselves under a rock or the ground. Flat fish go to
sleep in the sand; and they can be distinguished by the outlines of
their shapes in the sand, and are caught in this position by being
speared with pronged instruments. The basse, the chrysophrys or
gilt-head, the mullet, and fish of the like sort are often caught in
the daytime by the prong owing to their having been surprised when
sleeping; for it is scarcely probable that fish could be pronged while
awake. Cartilaginous fish sleep at times so soundly that they may be
caught by hand. The dolphin and the whale, and all such as are
furnished with a blow-hole, sleep with the blow-hole over the
surface of the water, and breathe through the blow-hole while they
keep up a quiet flapping of their fins; indeed, some mariners assure
us that they have actually heard the dolphin snoring.
Molluscs sleep like fishes, and crustaceans also. It is plain also
that insects sleep; for there can be no mistaking their condition of
motionless repose. In the bee the fact of its being asleep is very
obvious; for at night-time bees are at rest and cease to hum. But
the fact that insects sleep may be very well seen in the case of
common every-day creatures; for not only do they rest at night-time
from dimness of vision (and, by the way, all hard-eyed creatures see
but indistinctly), but even if a lighted candle be presented they
continue sleeping quite as soundly.
Of all animals man is most given to dreaming. Children and infants
do not dream, but in most cases dreaming comes on at the age of four
or five years. Instances have been known of full-grown men and women
that have never dreamed at all; in exceptional cases of this kind,
it has been observed that when a dream occurs in advanced life it
prognosticates either actual dissolution or a general break-up of
the system.
So much then for sensation and for the phenomena of sleeping and
of awakening.
11
With regard to sex, some animals are divided into male and female,
but others are not so divided but can only be said in a comparative
way to bring forth young and to be pregnant. In animals that live
confined to one spot there is no duality of sex; nor is there such, in
fact, in any testaceans. In molluscs and in crustaceans we find male
and female: and, indeed, in all animals furnished with feet, biped
or quadruped; in short, in all such as by copulation engender either
live young or egg or grub. In the several genera, with however certain
exceptions, there either absolutely is or absolutely is not a
duality of sex. Thus, in quadrupeds the duality is universal, while
the absence of such duality is universal in testaceans, and of these
creatures, as with plants, some individuals are fruitful and some
are not their lying still
But among insects and fishes, some cases are found wholly devoid
of this duality of sex. For instance, the eel is neither male nor
female, and can engender nothing. In fact, those who assert that
eels are at times found with hair-like or worm-like progeny
attached, make only random assertions from not having carefully
noticed the locality of such attachments. For no eel nor animal of
this kind is ever viviparous unless previously oviparous; and no eel
was ever yet seen with an egg. And animals that are viviparous have
their young in the womb and closely attached, and not in the belly;
for, if the embryo were kept in the belly, it would be subjected to
the process of digestion like ordinary food. When people rest
duality of sex in the eel on the assertion that the head of the male
is bigger and longer, and the head of the female smaller and more
snubbed, they are taking diversity of species for diversity of sex.
There are certain fish that are nicknamed the epitragiae, or
capon-fish, and, by the way, fish of this description are found in
fresh water, as the carp and the balagrus. This sort of fish never has
either roe or milt; but they are hard and fat all over, and are
furnished with a small gut; and these fish are regarded as of
super-excellent quality.
Again, just as in testaceans and in plants there is what bears and
engenders, but not what impregnates, so is it, among fishes, with
the psetta, the erythrinus, and the channe; for these fish are in
all cases found furnished with eggs.
As a general rule, in red-blooded animals furnished with feet
and not oviparous, the male is larger and longer-lived than the female
(except with the mule, where the female is longer-lived and bigger
than the male); whereas in oviparous and vermiparous creatures, as
in fishes and in insects, the female is larger than the male; as,
for instance, with the serpent, the phalangium or venom-spider, the
gecko, and the frog. The same difference in size of the sexes is found
in fishes, as, for instance, in the smaller cartilaginous fishes, in
the greater part of the gregarious species, and in all that live in
and about rocks. The fact that the female is longer-lived than the
male is inferred from the fact that female fishes are caught older
than males. Furthermore, in all animals the upper and front parts
are better, stronger, and more thoroughly equipped in the male than in
the female, whereas in the female those parts are the better that
may be termed hinder-parts or underparts. And this statement is
applicable to man and to all vivipara that have feet. Again, the
female is less muscular and less compactly jointed, and more thin
and delicate in the hair-that is, where hair is found; and, where
there is no hair, less strongly furnished in some analogous substance.
And the female is more flaccid in texture of flesh, and more
knock-kneed, and the shin-bones are thinner; and the feet are more
arched and hollow in such animals as are furnished with feet. And with
regard to voice, the female in all animals that are vocal has a
thinner and sharper voice than the male; except, by the way, with
kine, for the lowing and bellowing of the cow has a deeper note than
that of the bull. With regard to organs of defence and offence, such
as teeth, tusks, horns, spurs, and the like, these in some species the
male possesses and the female does not; as, for instance, the hind has
no horns, and where the cock-bird has a spur the hen is entirely
destitute of the organ; and in like manner the sow is devoid of tusks.
In other species such organs are found in both sexes, but are more
perfectly developed in the male; as, for instance, the horn of the
bull is more powerful than the horn of the cow.
Book V
1
As to the parts internal and external that all animals are
furnished withal, and further as to the senses, to voice, and sleep,
and the duality sex, all these topics have now been touched upon. It
now remains for us to discuss, duly and in order, their several
modes of propagation.
These modes are many and diverse, and in some respects are like,
and in other respects are unlike to one another. As we carried on
our previous discussion genus by genus, so we must attempt to follow
the same divisions in our present argument; only that whereas in the
former case we started with a consideration of the parts of man, in
the present case it behoves us to treat of man last of all because
he involves most discussion. We shall commence, then, with testaceans,
and then proceed to crustaceans, and then to the other genera in due
order; and these other genera are, severally, molluscs, and insects,
then fishes viviparous and fishes oviparous, and next birds; and
afterwards we shall treat of animals provided with feet, both such
as are oviparous and such as are viviparous, and we may observe that
some quadrupeds are viviparous, but that the only viviparous biped
is man.
Now there is one property that animals are found to have in common
with plants. For some plants are generated from the seed of plants,
whilst other plants are self-generated through the formation of some
elemental principle similar to a seed; and of these latter plants some
derive their nutriment from the ground, whilst others grow inside
other plants, as is mentioned, by the way, in my treatise on Botany.
So with animals, some spring from parent animals according to their
kind, whilst others grow spontaneously and not from kindred stock; and
of these instances of spontaneous generation some come from putrefying
earth or vegetable matter, as is the case with a number of insects,
while others are spontaneously generated in the inside of animals
out of the secretions of their several organs.
In animals where generation goes by heredity, wherever there is
duality of sex generation is due to copulation. In the group of
fishes, however, there are some that are neither male nor female,
and these, while they are identical generically with other fish,
differ from them specifically; but there are others that stand
altogether isolated and apart by themselves. Other fishes there are
that are always female and never male, and from them are conceived
what correspond to the wind-eggs in birds. Such eggs, by the way, in
birds are all unfruitful; but it is their nature to be independently
capable of generation up to the egg-stage, unless indeed there be some
other mode than the one familiar to us of intercourse with the male;
but concerning these topics we shall treat more precisely later on. In
the case of certain fishes, however, after they have spontaneously
generated eggs, these eggs develop into living animals; only that in
certain of these cases development is spontaneous, and in others is
not independent of the male; and the method of proceeding in regard to
these matters will set forth by and by, for the method is somewhat
like to the method followed in the case of birds. But whensoever
creatures are spontaneously generated, either in other animals, in the
soil, or on plants, or in the parts of these, and when such are
generated male and female, then from the copulation of such
spontaneously generated males and females there is generated a
something-a something never identical in shape with the parents, but a
something imperfect. For instance, the issue of copulation in lice
is nits; in flies, grubs; in fleas, grubs egg-like in shape; and
from these issues the parent-species is never reproduced, nor is any
animal produced at all, but the like nondescripts only.
First, then, we must proceed to treat of 'covering' in regard to
such animals as cover and are covered; and then after this to treat in
due order of other matters, both the exceptional and those of
general occurrence.
2
Those animals, then, cover and are covered in which there is a
duality of sex, and the modes of covering in such animals are not in
all cases similar nor analogous. For the red-blooded animals that
are viviparous and furnished with feet have in all cases organs
adapted for procreation, but the sexes do not in all cases come
together in like manner. Thus, opisthuretic animals copulate with a
rearward presentment, as is the case with the lion, the hare, and
the lynx; though, by the way, in the case of the hare, the female is
often observed to cover the male.
The case is similar in most other such animals; that is to say,
the majority of quadrupeds copulate as best they can, the male
mounting the female; and this is the only method of copulating adopted
by birds, though there are certain diversities of method observed even
in birds. For in some cases the female squats on the ground and the
male mounts on top of her, as is the case with the cock and hen
bustard, and the barn-door cock and hen; in other cases, the male
mounts without the female squatting, as with the male and female
crane; for, with these birds, the male mounts on to the back of the
female and covers her, and like the cock-sparrow consumes but very
little time in the operation. Of quadrupeds, bears perform the
operation lying prone on one another, in the same way as other
quadrupeds do while standing up; that is to say, with the belly of the
male pressed to the back of the female. Hedgehogs copulate erect,
belly to belly.
With regard to large-sized vivipara, the hind only very rarely
sustains the mounting of the stag to the full conclusion of the
operation, and the same is the case with the cow as regards the
bull, owing to the rigidity of the penis of the bull. In point of
fact, the females of these animals elicit the sperm of the male in the
act of withdrawing from underneath him; and, by the way, this
phenomenon has been observed in the case of the stag and hind,
domesticated, of course. Covering with the wolf is the same as with
the dog. Cats do not copulate with a rearward presentment on the
part of the female, but the male stands erect and the female puts
herself underneath him; and, by the way, the female cat is
peculiarly lecherous, and wheedles the male on to sexual commerce, and
caterwauls during the operation. Camels copulate with the female in
a sitting posture, and the male straddles over and covers her, not
with the hinder presentment on the female's part but like the other
quadrupeds mentioned above, and they pass the whole day long in the
operation; when thus engaged they retire to lonely spots, and none but
their keeper dare approach them. And, be it observed, the penis of the
camel is so sinewy that bow-strings are manufactured out of it.
Elephants, also, copulate in lonely places, and especially by
river-sides in their usual haunts; the female squats down, and
straddles with her legs, and the male mounts and covers her. The
seal covers like all opisthuretic animals, and in this species the
copulation extends over a lengthened time, as is the case with the dog
and bitch; and the penis in the male seal is exceptionally large.
3
Oviparous quadrupeds cover one another in the same way. That is to
say, in some cases the male mounts the female precisely as in the
viviparous animals, as is observed in both the land and the sea
tortoise. . . .
