For at the rutting seasons both the males and the females take to running at their genitals, and the two sexes take to
smelling
each other at those parts.
Aristotle copy
It is the same with the sense of smell; that is to say, some animals have nostrils, and others have only the passages for smell, such as birds.
It is the same also with the organ of taste, the tongue.
Of aquatic red-blooded animals, fishes possess the organ of taste, namely the tongue, but it is in an imperfect and amorphous form, in other words it is osseous and undetached.
In some fish the palate is fleshy, as in the fresh-water carp, so that by an inattentive observer it might be mistaken for a tongue.
There is no doubt but that fishes have the sense of taste, for a great number of them delight in special flavours; and fishes freely take the hook if it be baited with a piece of flesh from a tunny or from any fat fish, obviously enjoying the taste and the eating of food of this kind. Fishes have no visible organs for hearing or for smell; for what might appear to indicate an organ for smell in the region of the nostril has no communication with the brain. These indications, in fact, in some cases lead nowhere, like blind alleys, and in other cases lead only to the gills; but for all this fishes undoubtedly hear and smell. For they are observed to run away from any loud noise, such as would be made by the rowing of a galley, so as to become easy of capture in their holes; for, by the way, though a sound be very slight in the open air, it has a loud and alarming resonance to creatures that hear under water. And this is shown in the capture of the dolphin; for when the hunters have enclosed a shoal of these fishes with a ring of their canoes, they set up from inside the canoes a loud splashing in the water, and by so doing induce the creatures to run in a shoal high and dry up on the beach, and so capture them while stupefied with the noise. And yet, for all this, the dolphin has no organ of hearing discernible. Furthermore, when engaged in their craft, fishermen are particularly careful to make no noise with oar or net; and after they have spied a shoal, they let down their nets at a spot so far off that they count upon no noise being likely to reach the shoal, occasioned either by oar or by the surging of their boats through the water; and the crews are strictly enjoined to preserve silence until the shoal has been surrounded. And, at times, when they want the fish to crowd together, they adopt the stratagem of the dolphin-hunter; in other words they clatter stones together, that the fish may, in their fright, gather close into one spot, and so they envelop them within their nets. (Before surrounding them, then, they preserve silence, as was said; but, after hemming the shoal in, they call on every man to shout out aloud and make any kind of noise; for on hearing the noise and hubbub the fish are sure to tumble into the nets from sheer fright. ) Further, when fishermen see a shoal of fish feeding at a distance, disporting themselves in calm bright weather on the surface of the water, if they are anxious to descry the size of the fish and to learn what kind of a fish it is, they may succeed in coming upon the shoal whilst yet basking at the surface if they sail up without the slightest noise, but if any man make a noise previously, the shoal will be seen to scurry away in alarm. Again, there is a small river-fish called the cottus or bullhead; this creature burrows under a rock, and fishers catch it by clattering stones against the rock, and the fish, bewildered at the noise, darts out of its hiding-place. From these facts it is quite obvious that fishes can hear; and indeed some people, from living near the sea and frequently witnessing such phenomena, affirm that of all living creatures the fish is the quickest of hearing. And, by the way, of all fishes the quickest of hearing are the cestreus or mullet, the chremps, the labrax or basse, the salpe or saupe, the chromis or sciaena, and such like. Other fishes are less quick of hearing, and, as might be expected, are more apt to be found living at the bottom of the sea.
The case is similar in regard to the sense of smell. Thus, as a rule, fishes will not touch a bait that is not fresh, neither are they all caught by one and the same bait, but they are severally caught by baits suited to their several likings, and these baits they distinguish by their sense of smell; and, by the way, some fishes are attracted by malodorous baits, as the saupe, for instance, is attracted by excrement. Again, a number of fishes live in caves; and accordingly fishermen, when they want to entice them out, smear the mouth of a cave with strong-smelling pickles, and the fish are Soon attracted to the smell. And the eel is caught in a similar way; for the fisherman lays down an earthen pot that has held pickles, after inserting a 'weel' in the neck thereof. As a general rule, fishes are especially attracted by savoury smells. For this reason, fishermen roast the fleshy parts of the cuttle-fish and use it as bait on account of its smell, for fish are peculiarly attracted by it; they also bake the octopus and bait their fish-baskets or weels with it, entirely, as they say, on account of its smell. Furthermore, gregarious fishes, if fish washings or bilge-water be thrown overboard, are observed to scud off to a distance, from apparent dislike of the smell. And it is asserted that they can at once detect by smell the presence of their own blood; and this faculty is manifested by their hurrying off to a great distance whenever fish-blood is spilt in the sea. And, as a general rule, if you bait your weel with a stinking bait, the fish refuse to enter the weel or even to draw near; but if you bait the weel with a fresh and savoury bait, they come at once from long distances and swim into it. And all this is particularly manifest in the dolphin; for, as was stated, it has no visible organ of hearing, and yet it is captured when stupefied with noise; and so, while it has no visible organ for smell, it has the sense of smell remarkably keen. It is manifest, then, that the animals above mentioned are in possession of all the five senses.
All other animals may, with very few exceptions, be comprehended within four genera: to wit, molluscs, crustaceans, testaceans, and insects. Of these four genera, the mollusc, the crustacean, and the insect have all the senses: at all events, they have sight, smell, and taste. As for insects, both winged and wingless, they can detect the presence of scented objects afar off, as for instance bees and snipes detect the presence of honey at a distance; and do so recognizing it by smell. Many insects are killed by the smell of brimstone; ants, if the apertures to their dwellings be smeared with powdered origanum and brimstone, quit their nests; and most insects may be banished with burnt hart's horn, or better still by the burning of the gum styrax. The cuttle-fish, the octopus, and the crawfish may be caught by bait. The octopus, in fact, clings so tightly to the rocks that it cannot be pulled off, but remains attached even when the knife is employed to sever it; and yet, if you apply fleabane to the creature, it drops off at the very smell of it. The facts are similar in regard to taste. For the food that insects go in quest of is of diverse kinds, and they do not all delight in the same flavours: for instance, the bee never settles on a withered or wilted flower, but on fresh and sweet ones; and the conops or gnat settles only on acrid substances and not on sweet. The sense of touch, by the way, as has been remarked, is common to all animals. Testaceans have the senses of smell and taste. With regard to their possession of the sense of smell, that is proved by the use of baits, e. g. in the case of the purple-fish; for this creature is enticed by baits of rancid meat, which it perceives and is attracted to from a great distance. The proof that it possesses a sense of taste hangs by the proof of its sense of smell; for whenever an animal is attracted to a thing by perceiving its smell, it is sure to like the taste of it. Further, all animals furnished with a mouth derive pleasure or pain from the touch of sapid juices.
With regard to sight and hearing, we cannot make statements with thorough confidence or on irrefutable evidence. However, the solen or razor-fish, if you make a noise, appears to burrow in the sand, and to hide himself deeper when he hears the approach of the iron rod (for the animal, be it observed, juts a little out of its hole, while the greater part of the body remains within),-and scallops, if you present your finger near their open valves, close them tight again as though they could see what you were doing. Furthermore, when fishermen are laying bait for neritae, they always get to leeward of them, and never speak a word while so engaged, under the firm impression that the animal can smell and hear; and they assure us that, if any one speaks aloud, the creature makes efforts to escape. With regard to testaceans, of the walking or creeping species the urchin appears to have the least developed sense of smell; and, of the stationary species, the ascidian and the barnacle.
So much for the organs of sense in the general run of animals. We now proceed to treat of voice.
9
Voice and sound are different from one another; and language differs from voice and sound. The fact is that no animal can give utterance to voice except by the action of the pharynx, and consequently such animals as are devoid of lung have no voice; and language is the articulation of vocal sounds by the instrumentality of the tongue. Thus, the voice and larynx can emit vocal or vowel sounds; non-vocal or consonantal sounds are made by the tongue and the lips; and out of these vocal and non-vocal sounds language is composed. Consequently, animals that have no tongue at all or that have a tongue not freely detached, have neither voice nor language; although, by the way, they may be enabled to make noises or sounds by other organs than the tongue.
Insects, for instance, have no voice and no language, but they can emit sound by internal air or wind, though not by the emission of air or wind; for no insects are capable of respiration. But some of them make a humming noise, like the bee and the other winged insects; and others are said to sing, as the cicada. And all these latter insects make their special noises by means of the membrane that is underneath the 'hypozoma'-those insects, that is to say, whose body is thus divided; as for instance, one species of cicada, which makes the sound by means of the friction of the air. Flies and bees, and the like, produce their special noise by opening and shutting their wings in the act of flying; for the noise made is by the friction of air between the wings when in motion. The noise made by grasshoppers is produced by rubbing or reverberating with their long hind-legs.
No mollusc or crustacean can produce any natural voice or sound. Fishes can produce no voice, for they have no lungs, nor windpipe and pharynx; but they emit certain inarticulate sounds and squeaks, which is what is called their 'voice', as the lyra or gurnard, and the sciaena (for these fishes make a grunting kind of noise) and the caprus or boar-fish in the river Achelous, and the chalcis and the cuckoo-fish; for the chalcis makes a sort piping sound, and the cuckoo-fish makes a sound greatly like the cry of the cuckoo, and is nicknamed from the circumstance. The apparent voice in all these fishes is a sound caused in some cases by a rubbing motion of their gills, which by the way are prickly, or in other cases by internal parts about their bellies; for they all have air or wind inside them, by rubbing and moving which they produce the sounds. Some cartilaginous fish seem to squeak.
But in these cases the term 'voice' is inappropriate; the more correct expression would be 'sound'. For the scallop, when it goes along supporting itself on the water, which is technically called 'flying', makes a whizzing sound; and so does the sea-swallow or flying-fish: for this fish flies in the air, clean out of the water, being furnished with fins broad and long. Just then as in the flight of birds the sound made by their wings is obviously not voice, so is it in the case of all these other creatures.
The dolphin, when taken out of the water, gives a squeak and moans in the air, but these noises do not resemble those above mentioned. For this creature has a voice (and can therefore utter vocal or vowel sounds), for it is furnished with a lung and a windpipe; but its tongue is not loose, nor has it lips, so as to give utterance to an articulate sound (or a sound of vowel and consonant in combination. )
Of animals which are furnished with tongue and lung, the oviparous quadrupeds produce a voice, but a feeble one; in some cases, a shrill piping sound, like the serpent; in others, a thin faint cry; in others, a low hiss, like the tortoise. The formation of the tongue in the frog is exceptional. The front part of the tongue, which in other animals is detached, is tightly fixed in the frog as it is in all fishes; but the part towards the pharynx is freely detached, and may, so to speak, be spat outwards, and it is with this that it makes its peculiar croak. The croaking that goes on in the marsh is the call of the males to the females at rutting time; and, by the way, all animals have a special cry for the like end at the like season, as is observed in the case of goats, swine, and sheep. (The bull-frog makes its croaking noise by putting its under jaw on a level with the surface of the water and extending its upper jaw to its utmost capacity. The tension is so great that the upper jaw becomes transparent, and the animal's eyes shine through the jaw like lamps; for, by the way, the commerce of the sexes takes place usually in the night time. ) Birds can utter vocal sounds; and such of them can articulate best as have the tongue moderately flat, and also such as have thin delicate tongues. In some cases, the male and the female utter the same note; in other cases, different notes. The smaller birds are more vocal and given to chirping than the larger ones; but in the pairing season every species of bird becomes particularly vocal. Some of them call when fighting, as the quail, others cry or crow when challenging to combat, as the partridge, or when victorious, as the barn-door cock. In some cases cock-birds and hens sing alike, as is observed in the nightingale, only that the hen stops singing when brooding or rearing her young; in other birds, the cocks sing more than the hens; in fact, with barn-door fowls and quails, the cock sings and the hen does not.
Viviparous quadrupeds utter vocal sounds of different kinds, but they have no power of converse. In fact, this power, or language, is peculiar to man. For while the capability of talking implies the capability of uttering vocal sounds, the converse does not hold good. Men that are born deaf are in all cases also dumb; that is, they can make vocal sounds, but they cannot speak. Children, just as they have no control over other parts, so have no control, at first, over the tongue; but it is so far imperfect, and only frees and detaches itself by degrees, so that in the interval children for the most part lisp and stutter.
Vocal sounds and modes of language differ according to locality. Vocal sounds are characterized chiefly by their pitch, whether high or low, and the kinds of sound capable of being produced are identical within the limits of one and the same species; but articulate sound, that one might reasonably designate 'language', differs both in various animals, and also in the same species according to diversity of locality; as for instance, some partridges cackle, and some make a shrill twittering noise. Of little birds, some sing a different note from the parent birds, if they have been removed from the nest and have heard other birds singing; and a mother-nightingale has been observed to give lessons in singing to a young bird, from which spectacle we might obviously infer that the song of the bird was not equally congenital with mere voice, but was something capable of modification and of improvement. Men have the same voice or vocal sounds, but they differ from one another in speech or language.
The elephant makes a vocal sound of a windlike sort by the mouth alone, unaided by the trunk, just like the sound of a man panting or sighing; but, if it employ the trunk as well, the sound produced is like that of a hoarse trumpet.
10
With regard to the sleeping and waking of animals, all creatures that are red-blooded and provided with legs give sensible proof that they go to sleep and that they waken up from sleep; for, as a matter of fact, all animals that are furnished with eyelids shut them up when they go to sleep. Furthermore, it would appear that not only do men dream, but horses also, and dogs, and oxen; aye, and sheep, and goats, and all viviparous quadrupeds; and dogs show their dreaming by barking in their sleep. With regard to oviparous animals we cannot be sure that they dream, but most undoubtedly they sleep. And the same may be said of water animals, such as fishes, molluscs, crustaceans, to wit crawfish and the like. These animals sleep without doubt, although their sleep is of very short duration. The proof of their sleeping cannot be got from the condition of their eyes-for none of these creatures are furnished with eyelids-but can be obtained only from their motionless repose.
Apart from the irritation caused by lice and what are nicknamed fleas, fish are met with in a state so motionless that one might easily catch them by hand; and, as a matter of fact, these little creatures, if the fish remain long in one position, will attack them in myriads and devour them. For these parasites are found in the depths of the sea, and are so numerous that they devour any bait made of fish's flesh if it be left long on the ground at the bottom; and fishermen often draw up a cluster of them, all clinging on to the bait.
But it is from the following facts that we may more reasonably infer that fishes sleep. Very often it is possible to take a fish off its guard so far as to catch hold of it or to give it a blow unawares; and all the while that you are preparing to catch or strike it, the fish is quite still but for a slight motion of the tail. And it is quite obvious that the animal is sleeping, from its movements if any disturbance be made during its repose; for it moves just as you would expect in a creature suddenly awakened. Further, owing to their being asleep, fish may be captured by torchlight. The watchmen in the tunny-fishery often take advantage of the fish being asleep to envelop them in a circle of nets; and it is quite obvious that they were thus sleeping by their lying still and allowing the glistening under-parts of their bodies to become visible, while the capture is taking Place. They sleep in the night-time more than during the day; and so soundly at night that you may cast the net without making them stir. Fish, as a general rule, sleep close to the ground, or to the sand or to a stone at the bottom, or after concealing themselves under a rock or the ground. Flat fish go to sleep in the sand; and they can be distinguished by the outlines of their shapes in the sand, and are caught in this position by being speared with pronged instruments. The basse, the chrysophrys or gilt-head, the mullet, and fish of the like sort are often caught in the daytime by the prong owing to their having been surprised when sleeping; for it is scarcely probable that fish could be pronged while awake. Cartilaginous fish sleep at times so soundly that they may be caught by hand. The dolphin and the whale, and all such as are furnished with a blow-hole, sleep with the blow-hole over the surface of the water, and breathe through the blow-hole while they keep up a quiet flapping of their fins; indeed, some mariners assure us that they have actually heard the dolphin snoring.
Molluscs sleep like fishes, and crustaceans also. It is plain also that insects sleep; for there can be no mistaking their condition of motionless repose. In the bee the fact of its being asleep is very obvious; for at night-time bees are at rest and cease to hum. But the fact that insects sleep may be very well seen in the case of common every-day creatures; for not only do they rest at night-time from dimness of vision (and, by the way, all hard-eyed creatures see but indistinctly), but even if a lighted candle be presented they continue sleeping quite as soundly.
Of all animals man is most given to dreaming. Children and infants do not dream, but in most cases dreaming comes on at the age of four or five years. Instances have been known of full-grown men and women that have never dreamed at all; in exceptional cases of this kind, it has been observed that when a dream occurs in advanced life it prognosticates either actual dissolution or a general break-up of the system.
So much then for sensation and for the phenomena of sleeping and of awakening.
11
With regard to sex, some animals are divided into male and female, but others are not so divided but can only be said in a comparative way to bring forth young and to be pregnant. In animals that live confined to one spot there is no duality of sex; nor is there such, in fact, in any testaceans. In molluscs and in crustaceans we find male and female: and, indeed, in all animals furnished with feet, biped or quadruped; in short, in all such as by copulation engender either live young or egg or grub. In the several genera, with however certain exceptions, there either absolutely is or absolutely is not a duality of sex. Thus, in quadrupeds the duality is universal, while the absence of such duality is universal in testaceans, and of these creatures, as with plants, some individuals are fruitful and some are not their lying still
But among insects and fishes, some cases are found wholly devoid of this duality of sex. For instance, the eel is neither male nor female, and can engender nothing. In fact, those who assert that eels are at times found with hair-like or worm-like progeny attached, make only random assertions from not having carefully noticed the locality of such attachments. For no eel nor animal of this kind is ever viviparous unless previously oviparous; and no eel was ever yet seen with an egg. And animals that are viviparous have their young in the womb and closely attached, and not in the belly; for, if the embryo were kept in the belly, it would be subjected to the process of digestion like ordinary food. When people rest duality of sex in the eel on the assertion that the head of the male is bigger and longer, and the head of the female smaller and more snubbed, they are taking diversity of species for diversity of sex.
There are certain fish that are nicknamed the epitragiae, or capon-fish, and, by the way, fish of this description are found in fresh water, as the carp and the balagrus. This sort of fish never has either roe or milt; but they are hard and fat all over, and are furnished with a small gut; and these fish are regarded as of super-excellent quality.
Again, just as in testaceans and in plants there is what bears and engenders, but not what impregnates, so is it, among fishes, with the psetta, the erythrinus, and the channe; for these fish are in all cases found furnished with eggs.
As a general rule, in red-blooded animals furnished with feet and not oviparous, the male is larger and longer-lived than the female (except with the mule, where the female is longer-lived and bigger than the male); whereas in oviparous and vermiparous creatures, as in fishes and in insects, the female is larger than the male; as, for instance, with the serpent, the phalangium or venom-spider, the gecko, and the frog. The same difference in size of the sexes is found in fishes, as, for instance, in the smaller cartilaginous fishes, in the greater part of the gregarious species, and in all that live in and about rocks. The fact that the female is longer-lived than the male is inferred from the fact that female fishes are caught older than males. Furthermore, in all animals the upper and front parts are better, stronger, and more thoroughly equipped in the male than in the female, whereas in the female those parts are the better that may be termed hinder-parts or underparts. And this statement is applicable to man and to all vivipara that have feet. Again, the female is less muscular and less compactly jointed, and more thin and delicate in the hair-that is, where hair is found; and, where there is no hair, less strongly furnished in some analogous substance. And the female is more flaccid in texture of flesh, and more knock-kneed, and the shin-bones are thinner; and the feet are more arched and hollow in such animals as are furnished with feet. And with regard to voice, the female in all animals that are vocal has a thinner and sharper voice than the male; except, by the way, with kine, for the lowing and bellowing of the cow has a deeper note than that of the bull. With regard to organs of defence and offence, such as teeth, tusks, horns, spurs, and the like, these in some species the male possesses and the female does not; as, for instance, the hind has no horns, and where the cock-bird has a spur the hen is entirely destitute of the organ; and in like manner the sow is devoid of tusks. In other species such organs are found in both sexes, but are more perfectly developed in the male; as, for instance, the horn of the bull is more powerful than the horn of the cow.
Book V
1
As to the parts internal and external that all animals are furnished withal, and further as to the senses, to voice, and sleep, and the duality sex, all these topics have now been touched upon. It now remains for us to discuss, duly and in order, their several modes of propagation.
These modes are many and diverse, and in some respects are like, and in other respects are unlike to one another. As we carried on our previous discussion genus by genus, so we must attempt to follow the same divisions in our present argument; only that whereas in the former case we started with a consideration of the parts of man, in the present case it behoves us to treat of man last of all because he involves most discussion. We shall commence, then, with testaceans, and then proceed to crustaceans, and then to the other genera in due order; and these other genera are, severally, molluscs, and insects, then fishes viviparous and fishes oviparous, and next birds; and afterwards we shall treat of animals provided with feet, both such as are oviparous and such as are viviparous, and we may observe that some quadrupeds are viviparous, but that the only viviparous biped is man.
Now there is one property that animals are found to have in common with plants. For some plants are generated from the seed of plants, whilst other plants are self-generated through the formation of some elemental principle similar to a seed; and of these latter plants some derive their nutriment from the ground, whilst others grow inside other plants, as is mentioned, by the way, in my treatise on Botany. So with animals, some spring from parent animals according to their kind, whilst others grow spontaneously and not from kindred stock; and of these instances of spontaneous generation some come from putrefying earth or vegetable matter, as is the case with a number of insects, while others are spontaneously generated in the inside of animals out of the secretions of their several organs.
In animals where generation goes by heredity, wherever there is duality of sex generation is due to copulation. In the group of fishes, however, there are some that are neither male nor female, and these, while they are identical generically with other fish, differ from them specifically; but there are others that stand altogether isolated and apart by themselves. Other fishes there are that are always female and never male, and from them are conceived what correspond to the wind-eggs in birds. Such eggs, by the way, in birds are all unfruitful; but it is their nature to be independently capable of generation up to the egg-stage, unless indeed there be some other mode than the one familiar to us of intercourse with the male; but concerning these topics we shall treat more precisely later on. In the case of certain fishes, however, after they have spontaneously generated eggs, these eggs develop into living animals; only that in certain of these cases development is spontaneous, and in others is not independent of the male; and the method of proceeding in regard to these matters will set forth by and by, for the method is somewhat like to the method followed in the case of birds. But whensoever creatures are spontaneously generated, either in other animals, in the soil, or on plants, or in the parts of these, and when such are generated male and female, then from the copulation of such spontaneously generated males and females there is generated a something-a something never identical in shape with the parents, but a something imperfect. For instance, the issue of copulation in lice is nits; in flies, grubs; in fleas, grubs egg-like in shape; and from these issues the parent-species is never reproduced, nor is any animal produced at all, but the like nondescripts only.
First, then, we must proceed to treat of 'covering' in regard to such animals as cover and are covered; and then after this to treat in due order of other matters, both the exceptional and those of general occurrence.
2
Those animals, then, cover and are covered in which there is a duality of sex, and the modes of covering in such animals are not in all cases similar nor analogous. For the red-blooded animals that are viviparous and furnished with feet have in all cases organs adapted for procreation, but the sexes do not in all cases come together in like manner. Thus, opisthuretic animals copulate with a rearward presentment, as is the case with the lion, the hare, and the lynx; though, by the way, in the case of the hare, the female is often observed to cover the male.
The case is similar in most other such animals; that is to say, the majority of quadrupeds copulate as best they can, the male mounting the female; and this is the only method of copulating adopted by birds, though there are certain diversities of method observed even in birds. For in some cases the female squats on the ground and the male mounts on top of her, as is the case with the cock and hen bustard, and the barn-door cock and hen; in other cases, the male mounts without the female squatting, as with the male and female crane; for, with these birds, the male mounts on to the back of the female and covers her, and like the cock-sparrow consumes but very little time in the operation. Of quadrupeds, bears perform the operation lying prone on one another, in the same way as other quadrupeds do while standing up; that is to say, with the belly of the male pressed to the back of the female. Hedgehogs copulate erect, belly to belly.
With regard to large-sized vivipara, the hind only very rarely sustains the mounting of the stag to the full conclusion of the operation, and the same is the case with the cow as regards the bull, owing to the rigidity of the penis of the bull. In point of fact, the females of these animals elicit the sperm of the male in the act of withdrawing from underneath him; and, by the way, this phenomenon has been observed in the case of the stag and hind, domesticated, of course. Covering with the wolf is the same as with the dog. Cats do not copulate with a rearward presentment on the part of the female, but the male stands erect and the female puts herself underneath him; and, by the way, the female cat is peculiarly lecherous, and wheedles the male on to sexual commerce, and caterwauls during the operation. Camels copulate with the female in a sitting posture, and the male straddles over and covers her, not with the hinder presentment on the female's part but like the other quadrupeds mentioned above, and they pass the whole day long in the operation; when thus engaged they retire to lonely spots, and none but their keeper dare approach them. And, be it observed, the penis of the camel is so sinewy that bow-strings are manufactured out of it. Elephants, also, copulate in lonely places, and especially by river-sides in their usual haunts; the female squats down, and straddles with her legs, and the male mounts and covers her. The seal covers like all opisthuretic animals, and in this species the copulation extends over a lengthened time, as is the case with the dog and bitch; and the penis in the male seal is exceptionally large.
3
Oviparous quadrupeds cover one another in the same way. That is to say, in some cases the male mounts the female precisely as in the viviparous animals, as is observed in both the land and the sea tortoise. . . . And these creatures have an organ in which the ducts converge, and with which they perform the act of copulation, as is also observed in the toad, the frog, and all other animals of the same group.
4
Long animals devoid of feet, like serpents and muraenae, intertwine in coition, belly to belly. And, in fact, serpents coil round one another so tightly as to present the appearance of a single serpent with a pair of heads. The same mode is followed by the saurians; that is to say, they coil round one another in the act of coition.
5
All fishes, with the exception of the flat selachians, lie down side by side, and copulate belly to belly. Fishes, however, that are flat and furnished with tails-as the ray, the trygon, and the like-copulate not only in this way, but also, where the tail from its thinness is no impediment, by mounting of the male upon the female, belly to back. But the rhina or angel-fish, and other like fishes where the tail is large, copulate only by rubbing against one another sideways, belly to belly. Some men assure us that they have seen some of the selachia copulating hindways, dog and bitch. In the cartilaginous species the female is larger than the male; and the same is the case with other fishes for the most part. And among cartilaginous fishes are included, besides those already named, the bos, the lamia, the aetos, the narce or torpedo, the fishing-frog, and all the galeodes or sharks and dogfish. Cartilaginous fishes, then, of all kinds, have in many instances been observed copulating in the way above mentioned; for, by the way, in viviparous animals the process of copulation is of longer duration than in the ovipara.
It is the same with the dolphin and with all cetaceans; that is to say, they come side by side, male and female, and copulate, and the act extends over a time which is neither short nor very long.
Again, in cartilaginous fishes the male, in some species, differs from the female in the fact that he is furnished with two appendages hanging down from about the exit of the residuum, and that the female is not so furnished; and this distinction between the sexes is observed in all the species of the sharks and dog-fish.
Now neither fishes nor any animals devoid of feet are furnished with testicles, but male serpents and male fishes have a pair of ducts which fill with milt or sperm at the rutting season, and discharge, in all cases, a milk-like juice. These ducts unite, as in birds; for birds, by the way, have their testicles in their interior, and so have all ovipara that are furnished with feet. And this union of the ducts is so far continued and of such extension as to enter the receptive organ in the female.
In viviparous animals furnished with feet there is outwardly one and the same duct for the sperm and the liquid residuum; but there are separate ducts internally, as has been observed in the differentiation of the organs. And with such animals as are not viviparous the same passage serves for the discharge also of the solid residuum; although, internally, there are two passages, separate but near to one another. And these remarks apply to both male and female; for these animals are unprovided with a bladder except in the case of the tortoise; and the she-tortoise, though furnished with a bladder, has only one passage; and tortoises, by the way, belong to the ovipara.
In the case of oviparous fishes the process of coition is less open to observation. In point of fact, some are led by the want of actual observation to surmise that the female becomes impregnated by swallowing the seminal fluid of the male. And there can be no doubt that this proceeding on the part of the female is often witnessed; for at the rutting season the females follow the males and perform this operation, and strike the males with their mouths under the belly, and the males are thereby induced to part with the sperm sooner and more plentifully. And, further, at the spawning season the males go in pursuit of the females, and, as the female spawns, the males swallow the eggs; and the species is continued in existence by the spawn that survives this process. On the coast of Phoenicia they take advantage of these instinctive propensities of the two sexes to catch both one and the other: that is to say, by using the male of the grey mullet as a decoy they collect and net the female, and by using the female, the male.
The repeated observation of this phenomenon has led to the notion that the process was equivalent to coition, but the fact is that a similar phenomenon is observable in quadrupeds.
For at the rutting seasons both the males and the females take to running at their genitals, and the two sexes take to smelling each other at those parts. (With partridges, by the way, if the female gets to leeward of the male, she becomes thereby impregnated. And often when they happen to be in heat she is affected in this wise by the voice of the male, or by his breathing down on her as he flies overhead; and, by the way, both the male and the female partridge keep the mouth wide open and protrude the tongue in the process of coition. )
The actual process of copulation on the part of oviparous fishes is seldom accurately observed, owing to the fact that they very soon fall aside and slip asunder. But, for all that, the process has been observed to take place in the manner above described.
6
Molluscs, such as the octopus, the sepia, and the calamary, have sexual intercourse all in the same way; that is to say, they unite at the mouth, by an interlacing of their tentacles. When, then, the octopus rests its so-called head against the ground and spreads abroad its tentacles, the other sex fits into the outspreading of these tentacles, and the two sexes then bring their suckers into mutual connexion.
Some assert that the male has a kind of penis in one of his tentacles, the one in which are the largest suckers; and they further assert that the organ is tendinous in character, growing attached right up to the middle of the tentacle, and that the latter enables it to enter the nostril or funnel of the female.
Now cuttle-fish and calamaries swim about closely intertwined, with mouths and tentacles facing one another and fitting closely together, and swim thus in opposite directions; and they fit their so-called nostrils into one another, and the one sex swims backwards and the other frontwards during the operation. And the female lays its spawn by the so-called 'blow-hole'; and, by the way, some declare that it is at this organ that the coition really takes place.
7
Crustaceans copulate, as the crawfish, the lobster, the carid and the like, just like the opisthuretic quadrupeds, when the one animal turns up its tail and the other puts his tail on the other's tail. Copulation takes place in the early spring, near to the shore; and, in fact, the process has often been observed in the case of all these animals. Sometimes it takes place about the time when the figs begin to ripen. Lobsters and carids copulate in like manner.
Crabs copulate at the front parts of one another, belly to belly, throwing their overlapping opercula to meet one another: first the smaller crab mounts the larger at the rear; after he has mounted, the larger one turns on one side. Now, the female differs in no respect from the male except in the circumstance that its operculum is larger, more elevated, and more hairy, and into this operculum it spawns its eggs and in the same neighbourhood is the outlet of the residuum. In the copulative process of these animals there is no protrusion of a member from one animal into the other.
8
Insects copulate at the hinder end, and the smaller individuals mount the larger; and the smaller individual is I I is the male. The female pushes from underneath her sexual organ into the body of the male above, this being the reverse of the operation observed in other creatures; and this organ in the case of some insects appears to be disproportionately large when compared to the size of the body, and that too in very minute creatures; in some insects the disproportion is not so striking. This phenomenon may be witnessed if any one will pull asunder flies that are copulating; and, by the way, these creatures are, under the circumstances, averse to separation; for the intercourse of the sexes in their case is of long duration, as may be observed with common everyday insects, such as the fly and the cantharis. They all copulate in the manner above described, the fly, the cantharis, the sphondyle, (the phalangium spider) any others of the kind that copulate at all. The phalangia-that is to say, such of the species as spin webs-perform the operation in the following way: the female takes hold of the suspended web at the middle and gives a pull, and the male gives a counter pull; this operation they repeat until they are drawn in together and interlaced at the hinder ends; for, by the way, this mode of copulation suits them in consequence of the rotundity of their stomachs.
So much for the modes of sexual intercourse in all animals; but, with regard to the same phenomenon, there are definite laws followed as regards the season of the year and the age of the animal.
Animals in general seem naturally disposed to this intercourse at about the same period of the year, and that is when winter is changing into summer. And this is the season of spring, in which almost all things that fly or walk or swim take to pairing. Some animals pair and breed in autumn also and in winter, as is the case with certain aquatic animals and certain birds. Man pairs and breeds at all seasons, as is the case also with domesticated animals, owing to the shelter and good feeding they enjoy: that is to say, with those whose period of gestation is also comparatively brief, as the sow and the bitch, and with those birds that breed frequently. Many animals time the season of intercourse with a view to the right nurture subsequently of their young. In the human species, the male is more under sexual excitement in winter, and the female in summer.
With birds the far greater part, as has been said, pair and breed during the spring and early summer, with the exception of the halcyon.
The halcyon breeds at the season of the winter solstice. Accordingly, when this season is marked with calm weather, the name of 'halcyon days' is given to the seven days preceding, and to as many following, the solstice; as Simonides the poet says:
God lulls for fourteen days the winds to sleep
In winter; and this temperate interlude
Men call the Holy Season, when the deep
Cradles the mother Halcyon and her brood.
And these days are calm, when southerly winds prevail at the solstice, northerly ones having been the accompaniment of the Pleiads. The halcyon is said to take seven days for building her nest, and the other seven for laying and hatching her eggs. In our country there are not always halcyon days about the time of the winter solstice, but in the Sicilian seas this season of calm is almost periodical. The bird lays about five eggs.
9
(The aithyia, or diver, and the larus, or gull, lay their eggs on rocks bordering on the sea, two or three at a time; but the gull lays in the summer, and the diver at the beginning of spring, just after the winter solstice, and it broods over its eggs as birds do in general. And neither of these birds resorts to a hiding-place. )
The halcyon is the most rarely seen of all birds. It is seen only about the time of the setting of the Pleiads and the winter solstice. When ships are lying at anchor in the roads, it will hover about a vessel and then disappear in a moment, and Stesichorus in one of his poems alludes to this peculiarity. The nightingale also breeds at the beginning of summer, and lays five or six eggs; from autumn until spring it retires to a hiding-place.
Insects copulate and breed in winter also, that is when the weather is fine and south winds prevail; such, I mean, as do not hibernate, as the fly and the ant. The greater part of wild animals bring forth once and once only in the year, except in the case of animals like the hare, where the female can become superfoetally impregnated.
In like manner the great majority of fishes breed only once a year, like the shoal-fishes (or, in other words, such as are caught in nets), the tunny, the pelamys, the grey mullet, the chalcis, the mackerel, the sciaena, the psetta and the like, with the exception of the labrax or basse; for this fish (alone amongst those mentioned) breeds twice a year, and the second brood is the weaker of the two. The trichias and the rock-fishes breed twice a year; the red mullet breeds thrice a year, and is exceptional in this respect. This conclusion in regard to the red mullet is inferred from the spawn; for the spawn of the fish may be seen in certain places at three different times of the year. The scorpaena breeds twice a year. The sargue breeds twice, in the spring and in the autumn. The saupe breeds once a year only, in the autumn. The female tunny breeds only once a year, but owing to the fact that the fish in some cases spawn early and in others late, it looks as though the fish bred twice over. The first spawning takes place in December before the solstice, and the latter spawning in the spring. The male tunny differs from the female in being unprovided with the fin beneath the belly which is called aphareus.
10
Of cartilaginous fishes, the rhina or angelfish is the only one that breeds twice; for it breeds at the beginning of autumn, and at the setting of the Pleiads: and, of the two seasons, it is in better condition in the autumn. It engenders at a birth seven or eight young. Certain of the dog-fishes, for example the spotted dog, seem to breed twice a month, and this results from the circumstance that the eggs do not all reach maturity at the same time.
Some fishes breed at all seasons, as the muraena. This animal lays a great number of eggs at a time; and the young when hatched are very small but grow with great rapidity, like the young of the hippurus, for these fishes from being diminutive at the outset grow with exceptional rapidity to an exceptional size. (Be it observed that the muraena breeds at all seasons, but the hippurus only in the spring. The smyrus differs from the smyraena; for the muraena is mottled and weakly, whereas the smyrus is strong and of one uniform colour, and the colour resembles that of the pine-tree, and the animal has teeth inside and out. They say that in this case, as in other similar ones, the one is the male, and the other the female, of a single species. They come out on to the land, and are frequently caught. ) Fishes, then, as a general rule, attain their full growth with great rapidity, but this is especially the case, among small fishes, with the coracine or crow-fish: it spawns, by the way, near the shore, in weedy and tangled spots. The orphus also, or sea-perch, is small at first, and rapidly attains a great size. The pelamys and the tunny breed in the Euxine, and nowhere else. The cestreus or mullet, the chrysophrys or gilt-head, and the labrax or basse, breed best where rivers run into the sea. The orcys or large-sized tunny, the scorpis, and many other species spawn in the open sea.
11
Fish for the most part breed some time or other during the three months between the middle of March and the middle of June. Some few breed in autumn: as, for instance, the saupe and the sargus, and such others of this sort as breed shortly before the autumn equinox; likewise the electric ray and the angel-fish. Other fishes breed both in winter and in summer, as was previously observed: as, for instance, in winter-time the basse, the grey mullet, and the belone or pipe-fish; and in summer-time, from the middle of June to the middle of July, the female tunny, about the time of the summer solstice; and the tunny lays a sac-like enclosure in which are contained a number of small eggs. The ryades or shoal-fishes breed in summer.
Of the grey mullets, the chelon begins to be in roe between the middle of November and the middle of December; as also the sargue, and the smyxon or myxon, and the cephalus; and their period of gestation is thirty days. And, by the way, some of the grey mullet species are not produced from copulation, but grow spontaneously from mud and sand.
As a general rule, then, fishes are in roe in the spring-time; while some, as has been said, are so in summer, in autumn, or in winter. But whereas the impregnation in the spring-time follows a general law, impregnation in the other seasons does not follow the same rule either throughout or within the limits of one genus; and, further, conception in these variant seasons is not so prolific. And, indeed, we must bear this in mind, that just as with plants and quadrupeds diversity of locality has much to do not only with general physical health but also with the comparative frequency of sexual intercourse and generation, so also with regard to fishes locality of itself has much to do not only in regard to the size and vigour of the creature, but also in regard to its parturition and its copulations, causing the same species to breed oftener in one place and seldomer in another.
12
The molluscs also breed in spring. Of the marine molluscs one of the first to breed is the sepia. It spawns at all times of the day and its period of gestation is fifteen days. After the female has laid her eggs, the male comes and discharges the milt over the eggs, and the eggs thereupon harden. And the two sexes of this animal go about in pairs, side by side; and the male is more mottled and more black on the back than the female.
The octopus pairs in winter and breeds in spring, lying hidden for about two months. Its spawn is shaped like a vine-tendril, and resembles the fruit of the white poplar; the creature is extraordinarily prolific, for the number of individuals that come from the spawn is something incalculable. The male differs from the female in the fact that its head is longer, and that the organ called by the fishermen its penis, in the tentacle, is white. The female, after laying her eggs, broods over them, and in consequence gets out of condition, by reason of not going in quest of food during the hatching period.
The purple murex breeds about springtime, and the ceryx at the close of the winter. And, as a general rule, the testaceans are found to be furnished with their so-called eggs in spring-time and in autumn, with the exception of the edible urchin; for this animal has the so-called eggs in most abundance in these seasons, but at no season is unfurnished with them; and it is furnished with them in especial abundance in warm weather or when a full moon is in the sky. Only, by the way, these remarks do not apply to the sea-urchin found in the Pyrrhaean Straits, for this urchin is at its best for table purposes in the winter; and these urchins are small but full of eggs.
Snails are found by observations to become in all cases impregnated about the same season.
13
(Of birds the wild species, as has been stated, as a general rule pair and breed only once a year. The swallow, however, and the blackbird breed twice. With regard to the blackbird, however, its first brood is killed by inclemency of weather (for it is the earliest of all birds to breed), but the second brood it usually succeeds in rearing.
Birds that are domesticated or that are capable of domestication breed frequently, just as the common pigeon breeds all through the summer, and as is seen in the barn-door hen; for the barn-door cock and hen have intercourse, and the hen breeds, at all seasons alike: excepting by the way, during the days about the winter solstice.
Of the pigeon family there are many diversities; for the peristera or common pigeon is not identical with the peleias or rock-pigeon. In other words, the rock-pigeon is smaller than the common pigeon, and is less easily domesticated; it is also black, and small, red-footed and rough-footed; and in consequence of these peculiarities it is neglected by the pigeon-fancier. The largest of all the pigeon species is the phatta or ring-dove; and the next in size is the oenas or stock-dove; and the stock-dove is a little larger than the common pigeon. The smallest of all the species is the turtle-dove. Pigeons breed and hatch at all seasons, if they are furnished with a sunny place and all requisites; unless they are so furnished, they breed only in the summer. The spring brood is the best, or the autumn brood. At all events, without doubt, the produce of the hot season, the summer brood, is the poorest of the three. )
14
Further, animals differ from one another in regard to the time of life that is best adapted for sexual intercourse.
To begin with, in most animals the secretion of the seminal fluid and its generative capacity are not phenomena simultaneously manifested, but manifested successively. Thus, in all animals, the earliest secretion of sperm is unfruitful, or if it be fruitful the issue is comparatively poor and small. And this phenomenon is especially observable in man, in viviparous quadrupeds, and in birds; for in the case of man and the quadruped the offspring is smaller, and in the case of the bird, the egg.
For animals that copulate, of one and the same species, the age for maturity is in most species tolerably uniform, unless it occurs prematurely by reason of abnormality, or is postponed by physical injury.
In man, then, maturity is indicated by a change of the tone of voice, by an increase in size and an alteration in appearance of the sexual organs, as also in an increase of size and alteration in appearance of the breasts; and above all, in the hair-growth at the pubes. Man begins to possess seminal fluid about the age of fourteen, and becomes generatively capable at about the age of twenty-one years.
In other animals there is no hair-growth at the pubes (for some animals have no hair at all, and others have none on the belly, or less on the belly than on the back), but still, in some animals the change of voice is quite obvious; and in some animals other organs give indication of the commencing secretion of the sperm and the onset of generative capacity. As a general rule the female is sharper-toned in voice than the male, and the young animal than the elder; for, by the way, the stag has a much deeper-toned bay than the hind. Moreover, the male cries chiefly at rutting time, and the female under terror and alarm; and the cry of the female is short, and that of the male prolonged. With dogs also, as they grow old, the tone of the bark gets deeper.
There is a difference observable also in the neighings of horses. That is to say, the female foal has a thin small neigh, and the male foal a small neigh, yet bigger and deeper-toned than that of the female, and a louder one as time goes on. And when the young male and female are two years old and take to breeding, the neighing of the stallion becomes loud and deep, and that of the mare louder and shriller than heretofore; and this change goes on until they reach the age of about twenty years; and after this time the neighing in both sexes becomes weaker and weaker.
As a rule, then, as was stated, the voice of the male differs from the voice of the female, in animals where the voice admits of a continuous and prolonged sound, in the fact that the note in the male voice is more deep and bass; not, however, in all animals, for the contrary holds good in the case of some, as for instance in kine: for here the cow has a deeper note than the bull, and the calves a deeper note than the cattle. And we can thus understand the change of voice in animals that undergo gelding; for male animals that undergo this process assume the characters of the female.
The following are the ages at which various animals become capacitated for sexual commerce. The ewe and the she-goat are sexually mature when one year old, and this statement is made more confidently in respect to the she-goat than to the ewe; the ram and the he-goat are sexually mature at the same age. The progeny of very young individuals among these animals differs from that of other males: for the males improve in the course of the second year, when they become fully mature. The boar and the sow are capable of intercourse when eight months old, and the female brings forth when one year old, the difference corresponding to her period of gestation. The boar is capable of generation when eight months old, but, with a sire under a year in age, the litter is apt to be a poor one. The ages, however, are not invariable; now and then the boar and the sow are capable of intercourse when four months old, and are capable of producing a litter which can be reared when six months old; but at times the boar begins to be capable of intercourse when ten months. He continues sexually mature until he is three years old. The dog and the bitch are, as a rule, sexually capable and sexually receptive when a year old, and sometimes when eight months old; but the priority in date is more common with the dog than with the bitch. The period of gestation with the bitch is sixty days, or sixty-one, or sixty-two, or sixty-three at the utmost; the period is never under sixty days, or, if it is, the litter comes to no good. The bitch, after delivering a litter, submits to the male in six months, but not before. The horse and the mare are, at the earliest, sexually capable and sexually mature when two years old; the issue, however, of parents of this age is small and poor. As a general rule these animals are sexually capable when three years old, and they grow better for breeding purposes until they reach twenty years. The stallion is sexually capable up to the age of thirty-three years, and the mare up to forty, so that, in point of fact, the animals are sexually capable all their lives long; for the stallion, as a rule, lives for about thirty-five years, and the mare for a little over forty; although, by the way, a horse has known to live to the age of seventy-five. The ass and the she-ass are sexually capable when thirty months old; but, as a rule, they are not generatively mature until they are three years old, or three years and a half. An instance has been known of a she-ass bearing and bringing forth a foal when only a year old. A cow has been known to calve when only a year old, and the calf grew as big as might be expected, but no more. So much for the dates in time at which these animals attain to generative capacity.
In the human species, the male is generative, at the longest, up to seventy years, and the female up to fifty; but such extended periods are rare. As a rule, the male is generative up to the age of sixty-five, and to the age of forty-five the female is capable of conception.
The ewe bears up to eight years, and, if she be carefully tended, up to eleven years; in fact, the ram and the ewe are sexually capable pretty well all their lives long. He-goats, if they be fat, are more or less unserviceable for breeding; and this, by the way, is the reason why country folk say of a vine when it stops bearing that it is 'running the goat'. However, if an over-fat he-goat be thinned down, he becomes sexually capable and generative.
Rams single out the oldest ewes for copulation, and show no regard for the young ones. And, as has been stated, the issue of the younger ewes is poorer than that of the older ones.
The boar is good for breeding purposes until he is three years of age; but after that age his issue deteriorates, for after that age his vigour is on the decline. The boar is most capable after a good feed, and with the first sow it mounts; if poorly fed or put to many females, the copulation is abbreviated, and the litter is comparatively poor. The first litter of the sow is the fewest in number; at the second litter she is at her prime. The animal, as it grows old, continues to breed, but the sexual desire abates. When they reach fifteen years, they become unproductive, and are getting old. If a sow be highly fed, it is all the more eager for sexual commerce, whether old or young; but, if it be over-fattened in pregnancy, it gives the less milk after parturition. With regard to the age of the parents, the litter is the best when they are in their prime; but with regard to the seasons of the year, the litter is the best that comes at the beginning of winter; and the summer litter the poorest, consisting as it usually does of animals small and thin and flaccid. The boar, if it be well fed, is sexually capable at all hours, night and day; but otherwise is peculiarly salacious early in the morning. As it grows old the sexual passion dies away, as we have already remarked. Very often a boar, when more or less impotent from age or debility, finding itself unable to accomplish the sexual commerce with due speed, and growing fatigued with the standing posture, will roll the sow over on the ground, and the pair will conclude the operation side by side of one another. The sow is sure of conception if it drops its lugs in rutting time; if the ears do not thus drop, it may have to rut a second time before impregnation takes place.
Bitches do not submit to the male throughout their lives, but only until they reach a certain maturity of years. As a general rule, they are sexually receptive and conceptive until they are twelve years old; although, by the way, cases have been known where dogs and bitches have been respectively procreative and conceptive to the ages of eighteen and even of twenty years. But, as a rule, age diminishes the capability of generation and of conception with these animals as with all others.
The female of the camel is opisthuretic, and submits to the male in the way above described; and the season for copulation in Arabia is about the month of October. Its period of gestation is twelve months; and it is never delivered of more than one foal at a time. The female becomes sexually receptive and the male sexually capable at the age of three years. After parturition, an interval of a year elapses before the female is again receptive to the male.
The female elephant becomes sexually receptive when ten years old at the youngest, and when fifteen at the oldest; and the male is sexually capable when five years old, or six. The season for intercourse is spring. The male allows an interval of three years to elapse after commerce with a female: and, after it has once impregnated a female, it has no intercourse with her again. The period of gestation with the female is two years; and only one young animal is produced at a time, in other words it is uniparous. And the embryo is the size of a calf two or three months old.
15
So much for the copulations of such animals as copulate.
We now proceed to treat of generation both with respect to copulating and non-copulating animals, and we shall commence with discussing the subject of generation in the case of the testaceans.
The testacean is almost the only genus that throughout all its species is non-copulative.
The porphyrae, or purple murices, gather together to some one place in the spring-time, and deposit the so-called 'honeycomb'. This substance resembles the comb, only that it is not so neat and delicate; and looks as though a number of husks of white chick-peas were all stuck together. But none of these structures has any open passage, and the porphyra does not grow out of them, but these and all other testaceans grow out of mud and decaying matter. The substance, is, in fact, an excretion of the porphyra and the ceryx; for it is deposited by the ceryx as well. Such, then, of the testaceans as deposit the honeycomb are generated spontaneously like all other testaceans, but they certainly come in greater abundance in places where their congeners have been living previously. At the commencement of the process of depositing the honeycomb, they throw off a slippery mucus, and of this the husklike formations are composed. These formations, then, all melt and deposit their contents on the ground, and at this spot there are found on the ground a number of minute porphyrae, and porphyrae are caught at times with these animalculae upon them, some of which are too small to be differentiated in form. If the porphyrae are caught before producing this honey-comb, they sometimes go through the process in fishing-creels, not here and there in the baskets, but gathering to some one spot all together, just as they do in the sea; and owing to the narrowness of their new quarters they cluster together like a bunch of grapes.
There are many species of the purple murex; and some are large, as those found off Sigeum and Lectum; others are small, as those found in the Euripus, and on the coast of Caria. And those that are found in bays are large and rough; in most of them the peculiar bloom from which their name is derived is dark to blackness, in others it is reddish and small in size; some of the large ones weigh upwards of a mina apiece. But the specimens that are found along the coast and on the rocks are small-sized, and the bloom in their case is of a reddish hue. Further, as a general rule, in northern waters the bloom is blackish, and in southern waters of a reddish hue. The murex is caught in the spring-time when engaged in the construction of the honeycomb; but it is not caught at any time about the rising of the dog-star, for at that period it does not feed, but conceals itself and burrows. The bloom of the animal is situated between the mecon (or quasi-liver) and the neck, and the co-attachment of these is an intimate one. In colour it looks like a white membrane, and this is what people extract; and if it be removed and squeezed it stains your hand with the colour of the bloom. There is a kind of vein that runs through it, and this quasi-vein would appear to be in itself the bloom. And the qualities, by the way, of this organ are astringent. It is after the murex has constructed the honeycomb that the bloom is at its worst. Small specimens they break in pieces, shells and all, for it is no easy matter to extract the organ; but in dealing with the larger ones they first strip off the shell and then abstract the bloom. For this purpose the neck and mecon are separated, for the bloom lies in between them, above the so-called stomach; hence the necessity of separating them in abstracting the bloom. Fishermen are anxious always to break the animal in pieces while it is yet alive, for, if it die before the process is completed, it vomits out the bloom; and for this reason the fishermen keep the animals in creels, until they have collected a sufficient number and can attend to them at their leisure. Fishermen in past times used not to lower creels or attach them to the bait, so that very often the animal got dropped off in the pulling up; at present, however, they always attach a basket, so that if the animal fall off it is not lost. The animal is more inclined to slip off the bait if it be full inside; if it be empty it is difficult to shake it off. Such are the phenomena connected with the porphyra or murex.
The same phenomena are manifested by the ceryx or trumpet-shell; and the seasons are the same in which the phenomena are observable. Both animals, also, the murex and the ceryx, have their opercula similarly situated-and, in fact, all the stromboids, and this is congenital with them all; and they feed by protruding the so-called tongue underneath the operculum. The tongue of the murex is bigger than one's finger, and by means of it, it feeds, and perforates conchylia and the shells of its own kind. Both the murex and the ceryx are long lived. The murex lives for about six years; and the yearly increase is indicated by a distinct interval in the spiral convolution of the shell.
The mussel also constructs a honeycomb.
With regard to the limnostreae, or lagoon oysters, wherever you have slimy mud there you are sure to find them beginning to grow. Cockles and clams and razor-fishes and scallops row spontaneously in sandy places. The pinna grows straight up from its tuft of anchoring fibres in sandy and slimy places; these creatures have inside them a parasite nicknamed the pinna-guard, in some cases a small carid and in other cases a little crab; if the pinna be deprived of this pinna-guard it soon dies.
As a general rule, then, all testaceans grow by spontaneous generation in mud, differing from one another according to the differences of the material; oysters growing in slime, and cockles and the other testaceans above mentioned on sandy bottoms; and in the hollows of the rocks the ascidian and the barnacle, and common sorts, such as the limpet and the nerites. All these animals grow with great rapidity, especially the murex and the scallop; for the murex and the scallop attain their full growth in a year.
There is no doubt but that fishes have the sense of taste, for a great number of them delight in special flavours; and fishes freely take the hook if it be baited with a piece of flesh from a tunny or from any fat fish, obviously enjoying the taste and the eating of food of this kind. Fishes have no visible organs for hearing or for smell; for what might appear to indicate an organ for smell in the region of the nostril has no communication with the brain. These indications, in fact, in some cases lead nowhere, like blind alleys, and in other cases lead only to the gills; but for all this fishes undoubtedly hear and smell. For they are observed to run away from any loud noise, such as would be made by the rowing of a galley, so as to become easy of capture in their holes; for, by the way, though a sound be very slight in the open air, it has a loud and alarming resonance to creatures that hear under water. And this is shown in the capture of the dolphin; for when the hunters have enclosed a shoal of these fishes with a ring of their canoes, they set up from inside the canoes a loud splashing in the water, and by so doing induce the creatures to run in a shoal high and dry up on the beach, and so capture them while stupefied with the noise. And yet, for all this, the dolphin has no organ of hearing discernible. Furthermore, when engaged in their craft, fishermen are particularly careful to make no noise with oar or net; and after they have spied a shoal, they let down their nets at a spot so far off that they count upon no noise being likely to reach the shoal, occasioned either by oar or by the surging of their boats through the water; and the crews are strictly enjoined to preserve silence until the shoal has been surrounded. And, at times, when they want the fish to crowd together, they adopt the stratagem of the dolphin-hunter; in other words they clatter stones together, that the fish may, in their fright, gather close into one spot, and so they envelop them within their nets. (Before surrounding them, then, they preserve silence, as was said; but, after hemming the shoal in, they call on every man to shout out aloud and make any kind of noise; for on hearing the noise and hubbub the fish are sure to tumble into the nets from sheer fright. ) Further, when fishermen see a shoal of fish feeding at a distance, disporting themselves in calm bright weather on the surface of the water, if they are anxious to descry the size of the fish and to learn what kind of a fish it is, they may succeed in coming upon the shoal whilst yet basking at the surface if they sail up without the slightest noise, but if any man make a noise previously, the shoal will be seen to scurry away in alarm. Again, there is a small river-fish called the cottus or bullhead; this creature burrows under a rock, and fishers catch it by clattering stones against the rock, and the fish, bewildered at the noise, darts out of its hiding-place. From these facts it is quite obvious that fishes can hear; and indeed some people, from living near the sea and frequently witnessing such phenomena, affirm that of all living creatures the fish is the quickest of hearing. And, by the way, of all fishes the quickest of hearing are the cestreus or mullet, the chremps, the labrax or basse, the salpe or saupe, the chromis or sciaena, and such like. Other fishes are less quick of hearing, and, as might be expected, are more apt to be found living at the bottom of the sea.
The case is similar in regard to the sense of smell. Thus, as a rule, fishes will not touch a bait that is not fresh, neither are they all caught by one and the same bait, but they are severally caught by baits suited to their several likings, and these baits they distinguish by their sense of smell; and, by the way, some fishes are attracted by malodorous baits, as the saupe, for instance, is attracted by excrement. Again, a number of fishes live in caves; and accordingly fishermen, when they want to entice them out, smear the mouth of a cave with strong-smelling pickles, and the fish are Soon attracted to the smell. And the eel is caught in a similar way; for the fisherman lays down an earthen pot that has held pickles, after inserting a 'weel' in the neck thereof. As a general rule, fishes are especially attracted by savoury smells. For this reason, fishermen roast the fleshy parts of the cuttle-fish and use it as bait on account of its smell, for fish are peculiarly attracted by it; they also bake the octopus and bait their fish-baskets or weels with it, entirely, as they say, on account of its smell. Furthermore, gregarious fishes, if fish washings or bilge-water be thrown overboard, are observed to scud off to a distance, from apparent dislike of the smell. And it is asserted that they can at once detect by smell the presence of their own blood; and this faculty is manifested by their hurrying off to a great distance whenever fish-blood is spilt in the sea. And, as a general rule, if you bait your weel with a stinking bait, the fish refuse to enter the weel or even to draw near; but if you bait the weel with a fresh and savoury bait, they come at once from long distances and swim into it. And all this is particularly manifest in the dolphin; for, as was stated, it has no visible organ of hearing, and yet it is captured when stupefied with noise; and so, while it has no visible organ for smell, it has the sense of smell remarkably keen. It is manifest, then, that the animals above mentioned are in possession of all the five senses.
All other animals may, with very few exceptions, be comprehended within four genera: to wit, molluscs, crustaceans, testaceans, and insects. Of these four genera, the mollusc, the crustacean, and the insect have all the senses: at all events, they have sight, smell, and taste. As for insects, both winged and wingless, they can detect the presence of scented objects afar off, as for instance bees and snipes detect the presence of honey at a distance; and do so recognizing it by smell. Many insects are killed by the smell of brimstone; ants, if the apertures to their dwellings be smeared with powdered origanum and brimstone, quit their nests; and most insects may be banished with burnt hart's horn, or better still by the burning of the gum styrax. The cuttle-fish, the octopus, and the crawfish may be caught by bait. The octopus, in fact, clings so tightly to the rocks that it cannot be pulled off, but remains attached even when the knife is employed to sever it; and yet, if you apply fleabane to the creature, it drops off at the very smell of it. The facts are similar in regard to taste. For the food that insects go in quest of is of diverse kinds, and they do not all delight in the same flavours: for instance, the bee never settles on a withered or wilted flower, but on fresh and sweet ones; and the conops or gnat settles only on acrid substances and not on sweet. The sense of touch, by the way, as has been remarked, is common to all animals. Testaceans have the senses of smell and taste. With regard to their possession of the sense of smell, that is proved by the use of baits, e. g. in the case of the purple-fish; for this creature is enticed by baits of rancid meat, which it perceives and is attracted to from a great distance. The proof that it possesses a sense of taste hangs by the proof of its sense of smell; for whenever an animal is attracted to a thing by perceiving its smell, it is sure to like the taste of it. Further, all animals furnished with a mouth derive pleasure or pain from the touch of sapid juices.
With regard to sight and hearing, we cannot make statements with thorough confidence or on irrefutable evidence. However, the solen or razor-fish, if you make a noise, appears to burrow in the sand, and to hide himself deeper when he hears the approach of the iron rod (for the animal, be it observed, juts a little out of its hole, while the greater part of the body remains within),-and scallops, if you present your finger near their open valves, close them tight again as though they could see what you were doing. Furthermore, when fishermen are laying bait for neritae, they always get to leeward of them, and never speak a word while so engaged, under the firm impression that the animal can smell and hear; and they assure us that, if any one speaks aloud, the creature makes efforts to escape. With regard to testaceans, of the walking or creeping species the urchin appears to have the least developed sense of smell; and, of the stationary species, the ascidian and the barnacle.
So much for the organs of sense in the general run of animals. We now proceed to treat of voice.
9
Voice and sound are different from one another; and language differs from voice and sound. The fact is that no animal can give utterance to voice except by the action of the pharynx, and consequently such animals as are devoid of lung have no voice; and language is the articulation of vocal sounds by the instrumentality of the tongue. Thus, the voice and larynx can emit vocal or vowel sounds; non-vocal or consonantal sounds are made by the tongue and the lips; and out of these vocal and non-vocal sounds language is composed. Consequently, animals that have no tongue at all or that have a tongue not freely detached, have neither voice nor language; although, by the way, they may be enabled to make noises or sounds by other organs than the tongue.
Insects, for instance, have no voice and no language, but they can emit sound by internal air or wind, though not by the emission of air or wind; for no insects are capable of respiration. But some of them make a humming noise, like the bee and the other winged insects; and others are said to sing, as the cicada. And all these latter insects make their special noises by means of the membrane that is underneath the 'hypozoma'-those insects, that is to say, whose body is thus divided; as for instance, one species of cicada, which makes the sound by means of the friction of the air. Flies and bees, and the like, produce their special noise by opening and shutting their wings in the act of flying; for the noise made is by the friction of air between the wings when in motion. The noise made by grasshoppers is produced by rubbing or reverberating with their long hind-legs.
No mollusc or crustacean can produce any natural voice or sound. Fishes can produce no voice, for they have no lungs, nor windpipe and pharynx; but they emit certain inarticulate sounds and squeaks, which is what is called their 'voice', as the lyra or gurnard, and the sciaena (for these fishes make a grunting kind of noise) and the caprus or boar-fish in the river Achelous, and the chalcis and the cuckoo-fish; for the chalcis makes a sort piping sound, and the cuckoo-fish makes a sound greatly like the cry of the cuckoo, and is nicknamed from the circumstance. The apparent voice in all these fishes is a sound caused in some cases by a rubbing motion of their gills, which by the way are prickly, or in other cases by internal parts about their bellies; for they all have air or wind inside them, by rubbing and moving which they produce the sounds. Some cartilaginous fish seem to squeak.
But in these cases the term 'voice' is inappropriate; the more correct expression would be 'sound'. For the scallop, when it goes along supporting itself on the water, which is technically called 'flying', makes a whizzing sound; and so does the sea-swallow or flying-fish: for this fish flies in the air, clean out of the water, being furnished with fins broad and long. Just then as in the flight of birds the sound made by their wings is obviously not voice, so is it in the case of all these other creatures.
The dolphin, when taken out of the water, gives a squeak and moans in the air, but these noises do not resemble those above mentioned. For this creature has a voice (and can therefore utter vocal or vowel sounds), for it is furnished with a lung and a windpipe; but its tongue is not loose, nor has it lips, so as to give utterance to an articulate sound (or a sound of vowel and consonant in combination. )
Of animals which are furnished with tongue and lung, the oviparous quadrupeds produce a voice, but a feeble one; in some cases, a shrill piping sound, like the serpent; in others, a thin faint cry; in others, a low hiss, like the tortoise. The formation of the tongue in the frog is exceptional. The front part of the tongue, which in other animals is detached, is tightly fixed in the frog as it is in all fishes; but the part towards the pharynx is freely detached, and may, so to speak, be spat outwards, and it is with this that it makes its peculiar croak. The croaking that goes on in the marsh is the call of the males to the females at rutting time; and, by the way, all animals have a special cry for the like end at the like season, as is observed in the case of goats, swine, and sheep. (The bull-frog makes its croaking noise by putting its under jaw on a level with the surface of the water and extending its upper jaw to its utmost capacity. The tension is so great that the upper jaw becomes transparent, and the animal's eyes shine through the jaw like lamps; for, by the way, the commerce of the sexes takes place usually in the night time. ) Birds can utter vocal sounds; and such of them can articulate best as have the tongue moderately flat, and also such as have thin delicate tongues. In some cases, the male and the female utter the same note; in other cases, different notes. The smaller birds are more vocal and given to chirping than the larger ones; but in the pairing season every species of bird becomes particularly vocal. Some of them call when fighting, as the quail, others cry or crow when challenging to combat, as the partridge, or when victorious, as the barn-door cock. In some cases cock-birds and hens sing alike, as is observed in the nightingale, only that the hen stops singing when brooding or rearing her young; in other birds, the cocks sing more than the hens; in fact, with barn-door fowls and quails, the cock sings and the hen does not.
Viviparous quadrupeds utter vocal sounds of different kinds, but they have no power of converse. In fact, this power, or language, is peculiar to man. For while the capability of talking implies the capability of uttering vocal sounds, the converse does not hold good. Men that are born deaf are in all cases also dumb; that is, they can make vocal sounds, but they cannot speak. Children, just as they have no control over other parts, so have no control, at first, over the tongue; but it is so far imperfect, and only frees and detaches itself by degrees, so that in the interval children for the most part lisp and stutter.
Vocal sounds and modes of language differ according to locality. Vocal sounds are characterized chiefly by their pitch, whether high or low, and the kinds of sound capable of being produced are identical within the limits of one and the same species; but articulate sound, that one might reasonably designate 'language', differs both in various animals, and also in the same species according to diversity of locality; as for instance, some partridges cackle, and some make a shrill twittering noise. Of little birds, some sing a different note from the parent birds, if they have been removed from the nest and have heard other birds singing; and a mother-nightingale has been observed to give lessons in singing to a young bird, from which spectacle we might obviously infer that the song of the bird was not equally congenital with mere voice, but was something capable of modification and of improvement. Men have the same voice or vocal sounds, but they differ from one another in speech or language.
The elephant makes a vocal sound of a windlike sort by the mouth alone, unaided by the trunk, just like the sound of a man panting or sighing; but, if it employ the trunk as well, the sound produced is like that of a hoarse trumpet.
10
With regard to the sleeping and waking of animals, all creatures that are red-blooded and provided with legs give sensible proof that they go to sleep and that they waken up from sleep; for, as a matter of fact, all animals that are furnished with eyelids shut them up when they go to sleep. Furthermore, it would appear that not only do men dream, but horses also, and dogs, and oxen; aye, and sheep, and goats, and all viviparous quadrupeds; and dogs show their dreaming by barking in their sleep. With regard to oviparous animals we cannot be sure that they dream, but most undoubtedly they sleep. And the same may be said of water animals, such as fishes, molluscs, crustaceans, to wit crawfish and the like. These animals sleep without doubt, although their sleep is of very short duration. The proof of their sleeping cannot be got from the condition of their eyes-for none of these creatures are furnished with eyelids-but can be obtained only from their motionless repose.
Apart from the irritation caused by lice and what are nicknamed fleas, fish are met with in a state so motionless that one might easily catch them by hand; and, as a matter of fact, these little creatures, if the fish remain long in one position, will attack them in myriads and devour them. For these parasites are found in the depths of the sea, and are so numerous that they devour any bait made of fish's flesh if it be left long on the ground at the bottom; and fishermen often draw up a cluster of them, all clinging on to the bait.
But it is from the following facts that we may more reasonably infer that fishes sleep. Very often it is possible to take a fish off its guard so far as to catch hold of it or to give it a blow unawares; and all the while that you are preparing to catch or strike it, the fish is quite still but for a slight motion of the tail. And it is quite obvious that the animal is sleeping, from its movements if any disturbance be made during its repose; for it moves just as you would expect in a creature suddenly awakened. Further, owing to their being asleep, fish may be captured by torchlight. The watchmen in the tunny-fishery often take advantage of the fish being asleep to envelop them in a circle of nets; and it is quite obvious that they were thus sleeping by their lying still and allowing the glistening under-parts of their bodies to become visible, while the capture is taking Place. They sleep in the night-time more than during the day; and so soundly at night that you may cast the net without making them stir. Fish, as a general rule, sleep close to the ground, or to the sand or to a stone at the bottom, or after concealing themselves under a rock or the ground. Flat fish go to sleep in the sand; and they can be distinguished by the outlines of their shapes in the sand, and are caught in this position by being speared with pronged instruments. The basse, the chrysophrys or gilt-head, the mullet, and fish of the like sort are often caught in the daytime by the prong owing to their having been surprised when sleeping; for it is scarcely probable that fish could be pronged while awake. Cartilaginous fish sleep at times so soundly that they may be caught by hand. The dolphin and the whale, and all such as are furnished with a blow-hole, sleep with the blow-hole over the surface of the water, and breathe through the blow-hole while they keep up a quiet flapping of their fins; indeed, some mariners assure us that they have actually heard the dolphin snoring.
Molluscs sleep like fishes, and crustaceans also. It is plain also that insects sleep; for there can be no mistaking their condition of motionless repose. In the bee the fact of its being asleep is very obvious; for at night-time bees are at rest and cease to hum. But the fact that insects sleep may be very well seen in the case of common every-day creatures; for not only do they rest at night-time from dimness of vision (and, by the way, all hard-eyed creatures see but indistinctly), but even if a lighted candle be presented they continue sleeping quite as soundly.
Of all animals man is most given to dreaming. Children and infants do not dream, but in most cases dreaming comes on at the age of four or five years. Instances have been known of full-grown men and women that have never dreamed at all; in exceptional cases of this kind, it has been observed that when a dream occurs in advanced life it prognosticates either actual dissolution or a general break-up of the system.
So much then for sensation and for the phenomena of sleeping and of awakening.
11
With regard to sex, some animals are divided into male and female, but others are not so divided but can only be said in a comparative way to bring forth young and to be pregnant. In animals that live confined to one spot there is no duality of sex; nor is there such, in fact, in any testaceans. In molluscs and in crustaceans we find male and female: and, indeed, in all animals furnished with feet, biped or quadruped; in short, in all such as by copulation engender either live young or egg or grub. In the several genera, with however certain exceptions, there either absolutely is or absolutely is not a duality of sex. Thus, in quadrupeds the duality is universal, while the absence of such duality is universal in testaceans, and of these creatures, as with plants, some individuals are fruitful and some are not their lying still
But among insects and fishes, some cases are found wholly devoid of this duality of sex. For instance, the eel is neither male nor female, and can engender nothing. In fact, those who assert that eels are at times found with hair-like or worm-like progeny attached, make only random assertions from not having carefully noticed the locality of such attachments. For no eel nor animal of this kind is ever viviparous unless previously oviparous; and no eel was ever yet seen with an egg. And animals that are viviparous have their young in the womb and closely attached, and not in the belly; for, if the embryo were kept in the belly, it would be subjected to the process of digestion like ordinary food. When people rest duality of sex in the eel on the assertion that the head of the male is bigger and longer, and the head of the female smaller and more snubbed, they are taking diversity of species for diversity of sex.
There are certain fish that are nicknamed the epitragiae, or capon-fish, and, by the way, fish of this description are found in fresh water, as the carp and the balagrus. This sort of fish never has either roe or milt; but they are hard and fat all over, and are furnished with a small gut; and these fish are regarded as of super-excellent quality.
Again, just as in testaceans and in plants there is what bears and engenders, but not what impregnates, so is it, among fishes, with the psetta, the erythrinus, and the channe; for these fish are in all cases found furnished with eggs.
As a general rule, in red-blooded animals furnished with feet and not oviparous, the male is larger and longer-lived than the female (except with the mule, where the female is longer-lived and bigger than the male); whereas in oviparous and vermiparous creatures, as in fishes and in insects, the female is larger than the male; as, for instance, with the serpent, the phalangium or venom-spider, the gecko, and the frog. The same difference in size of the sexes is found in fishes, as, for instance, in the smaller cartilaginous fishes, in the greater part of the gregarious species, and in all that live in and about rocks. The fact that the female is longer-lived than the male is inferred from the fact that female fishes are caught older than males. Furthermore, in all animals the upper and front parts are better, stronger, and more thoroughly equipped in the male than in the female, whereas in the female those parts are the better that may be termed hinder-parts or underparts. And this statement is applicable to man and to all vivipara that have feet. Again, the female is less muscular and less compactly jointed, and more thin and delicate in the hair-that is, where hair is found; and, where there is no hair, less strongly furnished in some analogous substance. And the female is more flaccid in texture of flesh, and more knock-kneed, and the shin-bones are thinner; and the feet are more arched and hollow in such animals as are furnished with feet. And with regard to voice, the female in all animals that are vocal has a thinner and sharper voice than the male; except, by the way, with kine, for the lowing and bellowing of the cow has a deeper note than that of the bull. With regard to organs of defence and offence, such as teeth, tusks, horns, spurs, and the like, these in some species the male possesses and the female does not; as, for instance, the hind has no horns, and where the cock-bird has a spur the hen is entirely destitute of the organ; and in like manner the sow is devoid of tusks. In other species such organs are found in both sexes, but are more perfectly developed in the male; as, for instance, the horn of the bull is more powerful than the horn of the cow.
Book V
1
As to the parts internal and external that all animals are furnished withal, and further as to the senses, to voice, and sleep, and the duality sex, all these topics have now been touched upon. It now remains for us to discuss, duly and in order, their several modes of propagation.
These modes are many and diverse, and in some respects are like, and in other respects are unlike to one another. As we carried on our previous discussion genus by genus, so we must attempt to follow the same divisions in our present argument; only that whereas in the former case we started with a consideration of the parts of man, in the present case it behoves us to treat of man last of all because he involves most discussion. We shall commence, then, with testaceans, and then proceed to crustaceans, and then to the other genera in due order; and these other genera are, severally, molluscs, and insects, then fishes viviparous and fishes oviparous, and next birds; and afterwards we shall treat of animals provided with feet, both such as are oviparous and such as are viviparous, and we may observe that some quadrupeds are viviparous, but that the only viviparous biped is man.
Now there is one property that animals are found to have in common with plants. For some plants are generated from the seed of plants, whilst other plants are self-generated through the formation of some elemental principle similar to a seed; and of these latter plants some derive their nutriment from the ground, whilst others grow inside other plants, as is mentioned, by the way, in my treatise on Botany. So with animals, some spring from parent animals according to their kind, whilst others grow spontaneously and not from kindred stock; and of these instances of spontaneous generation some come from putrefying earth or vegetable matter, as is the case with a number of insects, while others are spontaneously generated in the inside of animals out of the secretions of their several organs.
In animals where generation goes by heredity, wherever there is duality of sex generation is due to copulation. In the group of fishes, however, there are some that are neither male nor female, and these, while they are identical generically with other fish, differ from them specifically; but there are others that stand altogether isolated and apart by themselves. Other fishes there are that are always female and never male, and from them are conceived what correspond to the wind-eggs in birds. Such eggs, by the way, in birds are all unfruitful; but it is their nature to be independently capable of generation up to the egg-stage, unless indeed there be some other mode than the one familiar to us of intercourse with the male; but concerning these topics we shall treat more precisely later on. In the case of certain fishes, however, after they have spontaneously generated eggs, these eggs develop into living animals; only that in certain of these cases development is spontaneous, and in others is not independent of the male; and the method of proceeding in regard to these matters will set forth by and by, for the method is somewhat like to the method followed in the case of birds. But whensoever creatures are spontaneously generated, either in other animals, in the soil, or on plants, or in the parts of these, and when such are generated male and female, then from the copulation of such spontaneously generated males and females there is generated a something-a something never identical in shape with the parents, but a something imperfect. For instance, the issue of copulation in lice is nits; in flies, grubs; in fleas, grubs egg-like in shape; and from these issues the parent-species is never reproduced, nor is any animal produced at all, but the like nondescripts only.
First, then, we must proceed to treat of 'covering' in regard to such animals as cover and are covered; and then after this to treat in due order of other matters, both the exceptional and those of general occurrence.
2
Those animals, then, cover and are covered in which there is a duality of sex, and the modes of covering in such animals are not in all cases similar nor analogous. For the red-blooded animals that are viviparous and furnished with feet have in all cases organs adapted for procreation, but the sexes do not in all cases come together in like manner. Thus, opisthuretic animals copulate with a rearward presentment, as is the case with the lion, the hare, and the lynx; though, by the way, in the case of the hare, the female is often observed to cover the male.
The case is similar in most other such animals; that is to say, the majority of quadrupeds copulate as best they can, the male mounting the female; and this is the only method of copulating adopted by birds, though there are certain diversities of method observed even in birds. For in some cases the female squats on the ground and the male mounts on top of her, as is the case with the cock and hen bustard, and the barn-door cock and hen; in other cases, the male mounts without the female squatting, as with the male and female crane; for, with these birds, the male mounts on to the back of the female and covers her, and like the cock-sparrow consumes but very little time in the operation. Of quadrupeds, bears perform the operation lying prone on one another, in the same way as other quadrupeds do while standing up; that is to say, with the belly of the male pressed to the back of the female. Hedgehogs copulate erect, belly to belly.
With regard to large-sized vivipara, the hind only very rarely sustains the mounting of the stag to the full conclusion of the operation, and the same is the case with the cow as regards the bull, owing to the rigidity of the penis of the bull. In point of fact, the females of these animals elicit the sperm of the male in the act of withdrawing from underneath him; and, by the way, this phenomenon has been observed in the case of the stag and hind, domesticated, of course. Covering with the wolf is the same as with the dog. Cats do not copulate with a rearward presentment on the part of the female, but the male stands erect and the female puts herself underneath him; and, by the way, the female cat is peculiarly lecherous, and wheedles the male on to sexual commerce, and caterwauls during the operation. Camels copulate with the female in a sitting posture, and the male straddles over and covers her, not with the hinder presentment on the female's part but like the other quadrupeds mentioned above, and they pass the whole day long in the operation; when thus engaged they retire to lonely spots, and none but their keeper dare approach them. And, be it observed, the penis of the camel is so sinewy that bow-strings are manufactured out of it. Elephants, also, copulate in lonely places, and especially by river-sides in their usual haunts; the female squats down, and straddles with her legs, and the male mounts and covers her. The seal covers like all opisthuretic animals, and in this species the copulation extends over a lengthened time, as is the case with the dog and bitch; and the penis in the male seal is exceptionally large.
3
Oviparous quadrupeds cover one another in the same way. That is to say, in some cases the male mounts the female precisely as in the viviparous animals, as is observed in both the land and the sea tortoise. . . . And these creatures have an organ in which the ducts converge, and with which they perform the act of copulation, as is also observed in the toad, the frog, and all other animals of the same group.
4
Long animals devoid of feet, like serpents and muraenae, intertwine in coition, belly to belly. And, in fact, serpents coil round one another so tightly as to present the appearance of a single serpent with a pair of heads. The same mode is followed by the saurians; that is to say, they coil round one another in the act of coition.
5
All fishes, with the exception of the flat selachians, lie down side by side, and copulate belly to belly. Fishes, however, that are flat and furnished with tails-as the ray, the trygon, and the like-copulate not only in this way, but also, where the tail from its thinness is no impediment, by mounting of the male upon the female, belly to back. But the rhina or angel-fish, and other like fishes where the tail is large, copulate only by rubbing against one another sideways, belly to belly. Some men assure us that they have seen some of the selachia copulating hindways, dog and bitch. In the cartilaginous species the female is larger than the male; and the same is the case with other fishes for the most part. And among cartilaginous fishes are included, besides those already named, the bos, the lamia, the aetos, the narce or torpedo, the fishing-frog, and all the galeodes or sharks and dogfish. Cartilaginous fishes, then, of all kinds, have in many instances been observed copulating in the way above mentioned; for, by the way, in viviparous animals the process of copulation is of longer duration than in the ovipara.
It is the same with the dolphin and with all cetaceans; that is to say, they come side by side, male and female, and copulate, and the act extends over a time which is neither short nor very long.
Again, in cartilaginous fishes the male, in some species, differs from the female in the fact that he is furnished with two appendages hanging down from about the exit of the residuum, and that the female is not so furnished; and this distinction between the sexes is observed in all the species of the sharks and dog-fish.
Now neither fishes nor any animals devoid of feet are furnished with testicles, but male serpents and male fishes have a pair of ducts which fill with milt or sperm at the rutting season, and discharge, in all cases, a milk-like juice. These ducts unite, as in birds; for birds, by the way, have their testicles in their interior, and so have all ovipara that are furnished with feet. And this union of the ducts is so far continued and of such extension as to enter the receptive organ in the female.
In viviparous animals furnished with feet there is outwardly one and the same duct for the sperm and the liquid residuum; but there are separate ducts internally, as has been observed in the differentiation of the organs. And with such animals as are not viviparous the same passage serves for the discharge also of the solid residuum; although, internally, there are two passages, separate but near to one another. And these remarks apply to both male and female; for these animals are unprovided with a bladder except in the case of the tortoise; and the she-tortoise, though furnished with a bladder, has only one passage; and tortoises, by the way, belong to the ovipara.
In the case of oviparous fishes the process of coition is less open to observation. In point of fact, some are led by the want of actual observation to surmise that the female becomes impregnated by swallowing the seminal fluid of the male. And there can be no doubt that this proceeding on the part of the female is often witnessed; for at the rutting season the females follow the males and perform this operation, and strike the males with their mouths under the belly, and the males are thereby induced to part with the sperm sooner and more plentifully. And, further, at the spawning season the males go in pursuit of the females, and, as the female spawns, the males swallow the eggs; and the species is continued in existence by the spawn that survives this process. On the coast of Phoenicia they take advantage of these instinctive propensities of the two sexes to catch both one and the other: that is to say, by using the male of the grey mullet as a decoy they collect and net the female, and by using the female, the male.
The repeated observation of this phenomenon has led to the notion that the process was equivalent to coition, but the fact is that a similar phenomenon is observable in quadrupeds.
For at the rutting seasons both the males and the females take to running at their genitals, and the two sexes take to smelling each other at those parts. (With partridges, by the way, if the female gets to leeward of the male, she becomes thereby impregnated. And often when they happen to be in heat she is affected in this wise by the voice of the male, or by his breathing down on her as he flies overhead; and, by the way, both the male and the female partridge keep the mouth wide open and protrude the tongue in the process of coition. )
The actual process of copulation on the part of oviparous fishes is seldom accurately observed, owing to the fact that they very soon fall aside and slip asunder. But, for all that, the process has been observed to take place in the manner above described.
6
Molluscs, such as the octopus, the sepia, and the calamary, have sexual intercourse all in the same way; that is to say, they unite at the mouth, by an interlacing of their tentacles. When, then, the octopus rests its so-called head against the ground and spreads abroad its tentacles, the other sex fits into the outspreading of these tentacles, and the two sexes then bring their suckers into mutual connexion.
Some assert that the male has a kind of penis in one of his tentacles, the one in which are the largest suckers; and they further assert that the organ is tendinous in character, growing attached right up to the middle of the tentacle, and that the latter enables it to enter the nostril or funnel of the female.
Now cuttle-fish and calamaries swim about closely intertwined, with mouths and tentacles facing one another and fitting closely together, and swim thus in opposite directions; and they fit their so-called nostrils into one another, and the one sex swims backwards and the other frontwards during the operation. And the female lays its spawn by the so-called 'blow-hole'; and, by the way, some declare that it is at this organ that the coition really takes place.
7
Crustaceans copulate, as the crawfish, the lobster, the carid and the like, just like the opisthuretic quadrupeds, when the one animal turns up its tail and the other puts his tail on the other's tail. Copulation takes place in the early spring, near to the shore; and, in fact, the process has often been observed in the case of all these animals. Sometimes it takes place about the time when the figs begin to ripen. Lobsters and carids copulate in like manner.
Crabs copulate at the front parts of one another, belly to belly, throwing their overlapping opercula to meet one another: first the smaller crab mounts the larger at the rear; after he has mounted, the larger one turns on one side. Now, the female differs in no respect from the male except in the circumstance that its operculum is larger, more elevated, and more hairy, and into this operculum it spawns its eggs and in the same neighbourhood is the outlet of the residuum. In the copulative process of these animals there is no protrusion of a member from one animal into the other.
8
Insects copulate at the hinder end, and the smaller individuals mount the larger; and the smaller individual is I I is the male. The female pushes from underneath her sexual organ into the body of the male above, this being the reverse of the operation observed in other creatures; and this organ in the case of some insects appears to be disproportionately large when compared to the size of the body, and that too in very minute creatures; in some insects the disproportion is not so striking. This phenomenon may be witnessed if any one will pull asunder flies that are copulating; and, by the way, these creatures are, under the circumstances, averse to separation; for the intercourse of the sexes in their case is of long duration, as may be observed with common everyday insects, such as the fly and the cantharis. They all copulate in the manner above described, the fly, the cantharis, the sphondyle, (the phalangium spider) any others of the kind that copulate at all. The phalangia-that is to say, such of the species as spin webs-perform the operation in the following way: the female takes hold of the suspended web at the middle and gives a pull, and the male gives a counter pull; this operation they repeat until they are drawn in together and interlaced at the hinder ends; for, by the way, this mode of copulation suits them in consequence of the rotundity of their stomachs.
So much for the modes of sexual intercourse in all animals; but, with regard to the same phenomenon, there are definite laws followed as regards the season of the year and the age of the animal.
Animals in general seem naturally disposed to this intercourse at about the same period of the year, and that is when winter is changing into summer. And this is the season of spring, in which almost all things that fly or walk or swim take to pairing. Some animals pair and breed in autumn also and in winter, as is the case with certain aquatic animals and certain birds. Man pairs and breeds at all seasons, as is the case also with domesticated animals, owing to the shelter and good feeding they enjoy: that is to say, with those whose period of gestation is also comparatively brief, as the sow and the bitch, and with those birds that breed frequently. Many animals time the season of intercourse with a view to the right nurture subsequently of their young. In the human species, the male is more under sexual excitement in winter, and the female in summer.
With birds the far greater part, as has been said, pair and breed during the spring and early summer, with the exception of the halcyon.
The halcyon breeds at the season of the winter solstice. Accordingly, when this season is marked with calm weather, the name of 'halcyon days' is given to the seven days preceding, and to as many following, the solstice; as Simonides the poet says:
God lulls for fourteen days the winds to sleep
In winter; and this temperate interlude
Men call the Holy Season, when the deep
Cradles the mother Halcyon and her brood.
And these days are calm, when southerly winds prevail at the solstice, northerly ones having been the accompaniment of the Pleiads. The halcyon is said to take seven days for building her nest, and the other seven for laying and hatching her eggs. In our country there are not always halcyon days about the time of the winter solstice, but in the Sicilian seas this season of calm is almost periodical. The bird lays about five eggs.
9
(The aithyia, or diver, and the larus, or gull, lay their eggs on rocks bordering on the sea, two or three at a time; but the gull lays in the summer, and the diver at the beginning of spring, just after the winter solstice, and it broods over its eggs as birds do in general. And neither of these birds resorts to a hiding-place. )
The halcyon is the most rarely seen of all birds. It is seen only about the time of the setting of the Pleiads and the winter solstice. When ships are lying at anchor in the roads, it will hover about a vessel and then disappear in a moment, and Stesichorus in one of his poems alludes to this peculiarity. The nightingale also breeds at the beginning of summer, and lays five or six eggs; from autumn until spring it retires to a hiding-place.
Insects copulate and breed in winter also, that is when the weather is fine and south winds prevail; such, I mean, as do not hibernate, as the fly and the ant. The greater part of wild animals bring forth once and once only in the year, except in the case of animals like the hare, where the female can become superfoetally impregnated.
In like manner the great majority of fishes breed only once a year, like the shoal-fishes (or, in other words, such as are caught in nets), the tunny, the pelamys, the grey mullet, the chalcis, the mackerel, the sciaena, the psetta and the like, with the exception of the labrax or basse; for this fish (alone amongst those mentioned) breeds twice a year, and the second brood is the weaker of the two. The trichias and the rock-fishes breed twice a year; the red mullet breeds thrice a year, and is exceptional in this respect. This conclusion in regard to the red mullet is inferred from the spawn; for the spawn of the fish may be seen in certain places at three different times of the year. The scorpaena breeds twice a year. The sargue breeds twice, in the spring and in the autumn. The saupe breeds once a year only, in the autumn. The female tunny breeds only once a year, but owing to the fact that the fish in some cases spawn early and in others late, it looks as though the fish bred twice over. The first spawning takes place in December before the solstice, and the latter spawning in the spring. The male tunny differs from the female in being unprovided with the fin beneath the belly which is called aphareus.
10
Of cartilaginous fishes, the rhina or angelfish is the only one that breeds twice; for it breeds at the beginning of autumn, and at the setting of the Pleiads: and, of the two seasons, it is in better condition in the autumn. It engenders at a birth seven or eight young. Certain of the dog-fishes, for example the spotted dog, seem to breed twice a month, and this results from the circumstance that the eggs do not all reach maturity at the same time.
Some fishes breed at all seasons, as the muraena. This animal lays a great number of eggs at a time; and the young when hatched are very small but grow with great rapidity, like the young of the hippurus, for these fishes from being diminutive at the outset grow with exceptional rapidity to an exceptional size. (Be it observed that the muraena breeds at all seasons, but the hippurus only in the spring. The smyrus differs from the smyraena; for the muraena is mottled and weakly, whereas the smyrus is strong and of one uniform colour, and the colour resembles that of the pine-tree, and the animal has teeth inside and out. They say that in this case, as in other similar ones, the one is the male, and the other the female, of a single species. They come out on to the land, and are frequently caught. ) Fishes, then, as a general rule, attain their full growth with great rapidity, but this is especially the case, among small fishes, with the coracine or crow-fish: it spawns, by the way, near the shore, in weedy and tangled spots. The orphus also, or sea-perch, is small at first, and rapidly attains a great size. The pelamys and the tunny breed in the Euxine, and nowhere else. The cestreus or mullet, the chrysophrys or gilt-head, and the labrax or basse, breed best where rivers run into the sea. The orcys or large-sized tunny, the scorpis, and many other species spawn in the open sea.
11
Fish for the most part breed some time or other during the three months between the middle of March and the middle of June. Some few breed in autumn: as, for instance, the saupe and the sargus, and such others of this sort as breed shortly before the autumn equinox; likewise the electric ray and the angel-fish. Other fishes breed both in winter and in summer, as was previously observed: as, for instance, in winter-time the basse, the grey mullet, and the belone or pipe-fish; and in summer-time, from the middle of June to the middle of July, the female tunny, about the time of the summer solstice; and the tunny lays a sac-like enclosure in which are contained a number of small eggs. The ryades or shoal-fishes breed in summer.
Of the grey mullets, the chelon begins to be in roe between the middle of November and the middle of December; as also the sargue, and the smyxon or myxon, and the cephalus; and their period of gestation is thirty days. And, by the way, some of the grey mullet species are not produced from copulation, but grow spontaneously from mud and sand.
As a general rule, then, fishes are in roe in the spring-time; while some, as has been said, are so in summer, in autumn, or in winter. But whereas the impregnation in the spring-time follows a general law, impregnation in the other seasons does not follow the same rule either throughout or within the limits of one genus; and, further, conception in these variant seasons is not so prolific. And, indeed, we must bear this in mind, that just as with plants and quadrupeds diversity of locality has much to do not only with general physical health but also with the comparative frequency of sexual intercourse and generation, so also with regard to fishes locality of itself has much to do not only in regard to the size and vigour of the creature, but also in regard to its parturition and its copulations, causing the same species to breed oftener in one place and seldomer in another.
12
The molluscs also breed in spring. Of the marine molluscs one of the first to breed is the sepia. It spawns at all times of the day and its period of gestation is fifteen days. After the female has laid her eggs, the male comes and discharges the milt over the eggs, and the eggs thereupon harden. And the two sexes of this animal go about in pairs, side by side; and the male is more mottled and more black on the back than the female.
The octopus pairs in winter and breeds in spring, lying hidden for about two months. Its spawn is shaped like a vine-tendril, and resembles the fruit of the white poplar; the creature is extraordinarily prolific, for the number of individuals that come from the spawn is something incalculable. The male differs from the female in the fact that its head is longer, and that the organ called by the fishermen its penis, in the tentacle, is white. The female, after laying her eggs, broods over them, and in consequence gets out of condition, by reason of not going in quest of food during the hatching period.
The purple murex breeds about springtime, and the ceryx at the close of the winter. And, as a general rule, the testaceans are found to be furnished with their so-called eggs in spring-time and in autumn, with the exception of the edible urchin; for this animal has the so-called eggs in most abundance in these seasons, but at no season is unfurnished with them; and it is furnished with them in especial abundance in warm weather or when a full moon is in the sky. Only, by the way, these remarks do not apply to the sea-urchin found in the Pyrrhaean Straits, for this urchin is at its best for table purposes in the winter; and these urchins are small but full of eggs.
Snails are found by observations to become in all cases impregnated about the same season.
13
(Of birds the wild species, as has been stated, as a general rule pair and breed only once a year. The swallow, however, and the blackbird breed twice. With regard to the blackbird, however, its first brood is killed by inclemency of weather (for it is the earliest of all birds to breed), but the second brood it usually succeeds in rearing.
Birds that are domesticated or that are capable of domestication breed frequently, just as the common pigeon breeds all through the summer, and as is seen in the barn-door hen; for the barn-door cock and hen have intercourse, and the hen breeds, at all seasons alike: excepting by the way, during the days about the winter solstice.
Of the pigeon family there are many diversities; for the peristera or common pigeon is not identical with the peleias or rock-pigeon. In other words, the rock-pigeon is smaller than the common pigeon, and is less easily domesticated; it is also black, and small, red-footed and rough-footed; and in consequence of these peculiarities it is neglected by the pigeon-fancier. The largest of all the pigeon species is the phatta or ring-dove; and the next in size is the oenas or stock-dove; and the stock-dove is a little larger than the common pigeon. The smallest of all the species is the turtle-dove. Pigeons breed and hatch at all seasons, if they are furnished with a sunny place and all requisites; unless they are so furnished, they breed only in the summer. The spring brood is the best, or the autumn brood. At all events, without doubt, the produce of the hot season, the summer brood, is the poorest of the three. )
14
Further, animals differ from one another in regard to the time of life that is best adapted for sexual intercourse.
To begin with, in most animals the secretion of the seminal fluid and its generative capacity are not phenomena simultaneously manifested, but manifested successively. Thus, in all animals, the earliest secretion of sperm is unfruitful, or if it be fruitful the issue is comparatively poor and small. And this phenomenon is especially observable in man, in viviparous quadrupeds, and in birds; for in the case of man and the quadruped the offspring is smaller, and in the case of the bird, the egg.
For animals that copulate, of one and the same species, the age for maturity is in most species tolerably uniform, unless it occurs prematurely by reason of abnormality, or is postponed by physical injury.
In man, then, maturity is indicated by a change of the tone of voice, by an increase in size and an alteration in appearance of the sexual organs, as also in an increase of size and alteration in appearance of the breasts; and above all, in the hair-growth at the pubes. Man begins to possess seminal fluid about the age of fourteen, and becomes generatively capable at about the age of twenty-one years.
In other animals there is no hair-growth at the pubes (for some animals have no hair at all, and others have none on the belly, or less on the belly than on the back), but still, in some animals the change of voice is quite obvious; and in some animals other organs give indication of the commencing secretion of the sperm and the onset of generative capacity. As a general rule the female is sharper-toned in voice than the male, and the young animal than the elder; for, by the way, the stag has a much deeper-toned bay than the hind. Moreover, the male cries chiefly at rutting time, and the female under terror and alarm; and the cry of the female is short, and that of the male prolonged. With dogs also, as they grow old, the tone of the bark gets deeper.
There is a difference observable also in the neighings of horses. That is to say, the female foal has a thin small neigh, and the male foal a small neigh, yet bigger and deeper-toned than that of the female, and a louder one as time goes on. And when the young male and female are two years old and take to breeding, the neighing of the stallion becomes loud and deep, and that of the mare louder and shriller than heretofore; and this change goes on until they reach the age of about twenty years; and after this time the neighing in both sexes becomes weaker and weaker.
As a rule, then, as was stated, the voice of the male differs from the voice of the female, in animals where the voice admits of a continuous and prolonged sound, in the fact that the note in the male voice is more deep and bass; not, however, in all animals, for the contrary holds good in the case of some, as for instance in kine: for here the cow has a deeper note than the bull, and the calves a deeper note than the cattle. And we can thus understand the change of voice in animals that undergo gelding; for male animals that undergo this process assume the characters of the female.
The following are the ages at which various animals become capacitated for sexual commerce. The ewe and the she-goat are sexually mature when one year old, and this statement is made more confidently in respect to the she-goat than to the ewe; the ram and the he-goat are sexually mature at the same age. The progeny of very young individuals among these animals differs from that of other males: for the males improve in the course of the second year, when they become fully mature. The boar and the sow are capable of intercourse when eight months old, and the female brings forth when one year old, the difference corresponding to her period of gestation. The boar is capable of generation when eight months old, but, with a sire under a year in age, the litter is apt to be a poor one. The ages, however, are not invariable; now and then the boar and the sow are capable of intercourse when four months old, and are capable of producing a litter which can be reared when six months old; but at times the boar begins to be capable of intercourse when ten months. He continues sexually mature until he is three years old. The dog and the bitch are, as a rule, sexually capable and sexually receptive when a year old, and sometimes when eight months old; but the priority in date is more common with the dog than with the bitch. The period of gestation with the bitch is sixty days, or sixty-one, or sixty-two, or sixty-three at the utmost; the period is never under sixty days, or, if it is, the litter comes to no good. The bitch, after delivering a litter, submits to the male in six months, but not before. The horse and the mare are, at the earliest, sexually capable and sexually mature when two years old; the issue, however, of parents of this age is small and poor. As a general rule these animals are sexually capable when three years old, and they grow better for breeding purposes until they reach twenty years. The stallion is sexually capable up to the age of thirty-three years, and the mare up to forty, so that, in point of fact, the animals are sexually capable all their lives long; for the stallion, as a rule, lives for about thirty-five years, and the mare for a little over forty; although, by the way, a horse has known to live to the age of seventy-five. The ass and the she-ass are sexually capable when thirty months old; but, as a rule, they are not generatively mature until they are three years old, or three years and a half. An instance has been known of a she-ass bearing and bringing forth a foal when only a year old. A cow has been known to calve when only a year old, and the calf grew as big as might be expected, but no more. So much for the dates in time at which these animals attain to generative capacity.
In the human species, the male is generative, at the longest, up to seventy years, and the female up to fifty; but such extended periods are rare. As a rule, the male is generative up to the age of sixty-five, and to the age of forty-five the female is capable of conception.
The ewe bears up to eight years, and, if she be carefully tended, up to eleven years; in fact, the ram and the ewe are sexually capable pretty well all their lives long. He-goats, if they be fat, are more or less unserviceable for breeding; and this, by the way, is the reason why country folk say of a vine when it stops bearing that it is 'running the goat'. However, if an over-fat he-goat be thinned down, he becomes sexually capable and generative.
Rams single out the oldest ewes for copulation, and show no regard for the young ones. And, as has been stated, the issue of the younger ewes is poorer than that of the older ones.
The boar is good for breeding purposes until he is three years of age; but after that age his issue deteriorates, for after that age his vigour is on the decline. The boar is most capable after a good feed, and with the first sow it mounts; if poorly fed or put to many females, the copulation is abbreviated, and the litter is comparatively poor. The first litter of the sow is the fewest in number; at the second litter she is at her prime. The animal, as it grows old, continues to breed, but the sexual desire abates. When they reach fifteen years, they become unproductive, and are getting old. If a sow be highly fed, it is all the more eager for sexual commerce, whether old or young; but, if it be over-fattened in pregnancy, it gives the less milk after parturition. With regard to the age of the parents, the litter is the best when they are in their prime; but with regard to the seasons of the year, the litter is the best that comes at the beginning of winter; and the summer litter the poorest, consisting as it usually does of animals small and thin and flaccid. The boar, if it be well fed, is sexually capable at all hours, night and day; but otherwise is peculiarly salacious early in the morning. As it grows old the sexual passion dies away, as we have already remarked. Very often a boar, when more or less impotent from age or debility, finding itself unable to accomplish the sexual commerce with due speed, and growing fatigued with the standing posture, will roll the sow over on the ground, and the pair will conclude the operation side by side of one another. The sow is sure of conception if it drops its lugs in rutting time; if the ears do not thus drop, it may have to rut a second time before impregnation takes place.
Bitches do not submit to the male throughout their lives, but only until they reach a certain maturity of years. As a general rule, they are sexually receptive and conceptive until they are twelve years old; although, by the way, cases have been known where dogs and bitches have been respectively procreative and conceptive to the ages of eighteen and even of twenty years. But, as a rule, age diminishes the capability of generation and of conception with these animals as with all others.
The female of the camel is opisthuretic, and submits to the male in the way above described; and the season for copulation in Arabia is about the month of October. Its period of gestation is twelve months; and it is never delivered of more than one foal at a time. The female becomes sexually receptive and the male sexually capable at the age of three years. After parturition, an interval of a year elapses before the female is again receptive to the male.
The female elephant becomes sexually receptive when ten years old at the youngest, and when fifteen at the oldest; and the male is sexually capable when five years old, or six. The season for intercourse is spring. The male allows an interval of three years to elapse after commerce with a female: and, after it has once impregnated a female, it has no intercourse with her again. The period of gestation with the female is two years; and only one young animal is produced at a time, in other words it is uniparous. And the embryo is the size of a calf two or three months old.
15
So much for the copulations of such animals as copulate.
We now proceed to treat of generation both with respect to copulating and non-copulating animals, and we shall commence with discussing the subject of generation in the case of the testaceans.
The testacean is almost the only genus that throughout all its species is non-copulative.
The porphyrae, or purple murices, gather together to some one place in the spring-time, and deposit the so-called 'honeycomb'. This substance resembles the comb, only that it is not so neat and delicate; and looks as though a number of husks of white chick-peas were all stuck together. But none of these structures has any open passage, and the porphyra does not grow out of them, but these and all other testaceans grow out of mud and decaying matter. The substance, is, in fact, an excretion of the porphyra and the ceryx; for it is deposited by the ceryx as well. Such, then, of the testaceans as deposit the honeycomb are generated spontaneously like all other testaceans, but they certainly come in greater abundance in places where their congeners have been living previously. At the commencement of the process of depositing the honeycomb, they throw off a slippery mucus, and of this the husklike formations are composed. These formations, then, all melt and deposit their contents on the ground, and at this spot there are found on the ground a number of minute porphyrae, and porphyrae are caught at times with these animalculae upon them, some of which are too small to be differentiated in form. If the porphyrae are caught before producing this honey-comb, they sometimes go through the process in fishing-creels, not here and there in the baskets, but gathering to some one spot all together, just as they do in the sea; and owing to the narrowness of their new quarters they cluster together like a bunch of grapes.
There are many species of the purple murex; and some are large, as those found off Sigeum and Lectum; others are small, as those found in the Euripus, and on the coast of Caria. And those that are found in bays are large and rough; in most of them the peculiar bloom from which their name is derived is dark to blackness, in others it is reddish and small in size; some of the large ones weigh upwards of a mina apiece. But the specimens that are found along the coast and on the rocks are small-sized, and the bloom in their case is of a reddish hue. Further, as a general rule, in northern waters the bloom is blackish, and in southern waters of a reddish hue. The murex is caught in the spring-time when engaged in the construction of the honeycomb; but it is not caught at any time about the rising of the dog-star, for at that period it does not feed, but conceals itself and burrows. The bloom of the animal is situated between the mecon (or quasi-liver) and the neck, and the co-attachment of these is an intimate one. In colour it looks like a white membrane, and this is what people extract; and if it be removed and squeezed it stains your hand with the colour of the bloom. There is a kind of vein that runs through it, and this quasi-vein would appear to be in itself the bloom. And the qualities, by the way, of this organ are astringent. It is after the murex has constructed the honeycomb that the bloom is at its worst. Small specimens they break in pieces, shells and all, for it is no easy matter to extract the organ; but in dealing with the larger ones they first strip off the shell and then abstract the bloom. For this purpose the neck and mecon are separated, for the bloom lies in between them, above the so-called stomach; hence the necessity of separating them in abstracting the bloom. Fishermen are anxious always to break the animal in pieces while it is yet alive, for, if it die before the process is completed, it vomits out the bloom; and for this reason the fishermen keep the animals in creels, until they have collected a sufficient number and can attend to them at their leisure. Fishermen in past times used not to lower creels or attach them to the bait, so that very often the animal got dropped off in the pulling up; at present, however, they always attach a basket, so that if the animal fall off it is not lost. The animal is more inclined to slip off the bait if it be full inside; if it be empty it is difficult to shake it off. Such are the phenomena connected with the porphyra or murex.
The same phenomena are manifested by the ceryx or trumpet-shell; and the seasons are the same in which the phenomena are observable. Both animals, also, the murex and the ceryx, have their opercula similarly situated-and, in fact, all the stromboids, and this is congenital with them all; and they feed by protruding the so-called tongue underneath the operculum. The tongue of the murex is bigger than one's finger, and by means of it, it feeds, and perforates conchylia and the shells of its own kind. Both the murex and the ceryx are long lived. The murex lives for about six years; and the yearly increase is indicated by a distinct interval in the spiral convolution of the shell.
The mussel also constructs a honeycomb.
With regard to the limnostreae, or lagoon oysters, wherever you have slimy mud there you are sure to find them beginning to grow. Cockles and clams and razor-fishes and scallops row spontaneously in sandy places. The pinna grows straight up from its tuft of anchoring fibres in sandy and slimy places; these creatures have inside them a parasite nicknamed the pinna-guard, in some cases a small carid and in other cases a little crab; if the pinna be deprived of this pinna-guard it soon dies.
As a general rule, then, all testaceans grow by spontaneous generation in mud, differing from one another according to the differences of the material; oysters growing in slime, and cockles and the other testaceans above mentioned on sandy bottoms; and in the hollows of the rocks the ascidian and the barnacle, and common sorts, such as the limpet and the nerites. All these animals grow with great rapidity, especially the murex and the scallop; for the murex and the scallop attain their full growth in a year.
